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a b s t r a c t

An entropic measure for the analysis of grey level inhomogeneity (GLI) is proposed as
a function of length scale. It allows us to quantify the statistical dissimilarity of the
actual macrostate and the maximizing entropy of the reference one. The maximums
(minimums) of themeasure indicate those scales atwhichhigher (lower) average grey level
inhomogeneity appears compared toneighbour scales. Even adeeply hidden statistical grey
level periodicity can be detected by the equally distant minimums of the measure. The
striking effect of multiple intersecting curves (MICs) of the measure has been revealed for
pairs of simulated patterns, which differ in shades of grey or symmetry properties only.
In turn, for evolving photosphere granulation patterns, the stability in time of the first
peak position has been found. Interestingly, the third peak is dominant at initial steps
of the evolution. This indicates a temporary grouping of granules at a length scale that
may belong to the mesogranulation phenomenon. This behaviour has similarities with
that reported by Consolini, Berrilli et al. [G. Consolini, F. Berrilli, A. Florio, E. Pietropaolo,
L.A. Smaldone, Astron. Astrophys. 402 (2003) 1115; F. Berrilli, D. Del Moro, S. Russo, G.
Consolini, Th. Straus, Astrophys. J. 632 (2005) 677] for binarized granulation images of a
different data set.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The morphological features of complex materials are vital for modelling and predicting their macroscopic properties,
for instance, effective conductivity [1–4]. From binary micrographs of such materials, the quantitative characterization of
the spatial distribution of pixels in some cases allows one to correlate their properties and internal structure attributes. As
the white and black pixels are finite size objects (FSOs), one can assume that the latter represent hard-core particles. When
points approximate particles, the system can be described by a complete set of n-point correlation functions [1]. In practice,
their calculation is rather difficult, with the exception of two-point correlation function.
The much simpler statistical method of finding different length scale dependent morphological features for disordered

systems gives normalized information entropy [5] or cluster diversity and cluster entropy [6,7]. The length scale is
defined by the side size of the sampling square cell. However, the measures employ a set of discrete probabilities, whose
statistical meaning weakens at large length scales [5] or given low/high lattice site occupation probability [6,7]. The spatial
inhomogeneity for FSO distributions can be also evaluated by (i) a simplemathematical statistical measure, which compares
a certain randomvariablewith its expected value (its finalmodification is given by Eq. (2) in Ref. [8]) or (ii) a physical entropic
measure that quantifies a deviation per cell of a given configurationalmacrostate from the reference one describing themost
uniform FSO distribution (cf. Eq. (4) in Ref. [9]). In the latter approach a difference of the corresponding configurational
entropies is used. For L × L patterns partitioned in non-overlapping cells, the mathematical measure is limited to length
scales being integer divisors of L; otherwise only its approximated values are available even for a periodically repeated
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initial arrangement. The physical entropic measure, due to its conservation property, is free of such limitations and thus
it can be named as the exact one. It can detect even subtle self-similarity traces in model surface microstructures [10]; in
Eq. (3) the ‘+’ sign before the second term should be replaced by opposite one, ‘−’. In turn, when a sliding cell sampling
(SCS) is applied, all length scales are also allowed for the mathematical measure. The last two measures initially slightly
differ while at the other scales they correlate well. The maximal range of appropriate length scales, even for an assumed
minimal number of sampled cells of order 1000, is equal to L − 31 according to a simple condition for good cell statistics
given in Ref. [8].
On the other hand, experimental data and the results of theoretical simulations are frequently presented through

greyscale or colour images. The latter can be also carefully converted into 8-bit greyscale images with 256 shades of grey
between black and white colours [11]. It is obvious that more complex data can be encoded with this type of pattern
compared to 1-bit binary ones. Thus, the revealing of any length scale dependent characteristic features of grey level patterns
is of some importance. The grey level extension proposed here is a natural completion of the binary entropic measure [9,10].
Instead of the spatial degrees of freedom involved formerly, the extended measure considers specific degrees of freedom.
Those relate to possible distributions, under certain conditions, of every cell sumof grey level values inside the corresponding
cell at a given length scale. Then two configurational macrostates, defined in the next section, are compared per cell: the
one obtained on the basis of the existing pattern and the calculated reference one related to the most uniform distribution
of grey level values. Thus, the present entropic measure quantifies a kind of average grey level inhomogeneity over a range
of length scales.

2. The extended entropic measure

Let us assume that the initial pattern is a representative one for the investigated physical system. Instead of its standard
partitioning employed in Refs. [9,10] here we use the SCSmethod; see for instance Ref. [8]. For a given 8-bit greyscale image
of size L × L there are κ(k) = [L − k + 1]2 allowed positions of the sliding cell of size k × k. When the sampled cells are
placed in a non-overlappingmanner, the auxiliary pattern La× La, where La ≡ [L−k+ 1]k, obtained in this way reproduces
the general structure of the initial one; cf. Fig. 1(b). The SCS procedure provides local sums Gi(k) of grey level values for
each sampled ith cell of the initial pattern. At each length scale 1 ≤ k ≤ L the only restriction for local sums is the natural
constraint given by

κ∑
i=1

Gi(k) = G(k), (1)

where G(k) stands for the length scale dependent total sum of grey level values.
For a given configuration at scale k, the actual macrostate, AM(k), can be defined by the corresponding set, {Gi(k)}AM ≡

(G1(AM), . . . , Gκ (AM)). Inside every cell of size k ×k all unit cells each of size 1×1 can be numbered in sequence 1, 2, . . . , k2.
When for an 8-bit greyscale image all 256 shades of grey, i.e., from the range (0–255) [11] are taken into account, then
certain of the unit cells can be occupied by zero valued grey level. Within the simplest approach we consider all possible
order dependent partitions, allowing some of the parts to be zero, of obtained local sum Gi(k) over the k2 unit cells inside the
ith cell for i = 1, 2, . . . , κ . In mathematics this is sometimes referred to as a weak composition [12]. Then we calculate the
numberΩgr(k) of realizations of AM(k), i.e., the number of the appropriate configurational microstates that is the product
of the ways that each of sampled cells can be populated under the above conditions:

Ωgr(k,G) =
κ∏
i=1

(
Gi + k2 − 1
k2 − 1

)
. (2)

Now, we make use of a microcanonical entropy, Sgr(k) = kB lnΩgr(k), where the Boltzmann constant will be set as
kB = 1 for convenience. It is worth noticing that the entropic approach has already been utilized for binary patterns [9,
10]. To obtain at a given length scale k the highest possible value of the entropy, Sgr,max(k) = lnΩgr,max(k), we need a
reference macrostate, RM(k), ensuring the maximal numberΩgr,max(k) of its realizations. Physically, RM(k) corresponds to
the most uniformly distributed local sums Gi(k) under the constraint (1). Thus, it can be described by the appropriate set,
{Gi(k)}RM ≡ (G1(RM), . . . ,Gκ(RM)), where each pair i 6= j of sampled cells fulfils the simple condition |Gi(k)− Gj(k)| ≤ 1.
The validity of this simple condition has been checked for model systems by computer simulations. For the simplest case of
only two cells it is confirmed by elementary mathematical considerations. Therefore, in agreement with statistical physics,
the maximal number of the proper microstates can be written as

Ωgr,max(k,G) =
(
G0 + k2 − 1
k2 − 1

)κ−R0 (G0 + k2
k2 − 1

)R0
, (3)

where R0(k) = G(k) mod κ and G0(k) = [G(k) − R0(k)]/κ . Every microstate of the Ωgr,max set represents a reference
macrostate {Gi ∈ (G0,G0 + 1)}RM with κ − R0 and R0 number of cells with sums G0 and G0 + 1 of grey levels, respectively.
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