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Abstract

Two-electron mixed valency is a useful design concept for hydrogen and oxygen photocatalysis. As single-electron mixed-valence com-
pounds react in one-electron steps, two-electron mixed-valence compounds may react in two-electron steps at the constituent redox sites,
whether they are metal- or ligand-based. With the redox centers working in concert upon photoexcitation, two- and four-electron transfor-
mations are promoted along excited-state pathways. Such a strategy is ideally suited to the activation of small molecules. We describe the
photochemistry for hydrogen and oxygen activation using two-electron mixed-valence complexes of three different motifs: (a) Mn–Mn+2

bimetallic complexes, (b) tetrapyrrole macrocycles and (c) externally bridged di-iron(III)�-oxo porphyrin dimers.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The activation and use of small molecules of energy con-
sequence, including CO2, N2 and CH4 in addition to H2,
H2O and O2, share basic chemical commonalities[1]. They
are allmultielectronprocesses[2–4]. Moreover, for the small
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molecules listed above, proton transfer must accompany elec-
tron transfer[5–14], as bothelectron and proton inventories
need to be managed for successful small molecule activa-
tion [15–19]. Additionally, small molecule transformations
confront sizable thermodynamic or kinetic barriers tobond
activation that must be overcome from electronic excited
states if an energy-storing catalytic cycle is to be closed.

Our research efforts have addressed the italicized research
themes of the foregoing paragraph by expanding the reactiv-
ity of metal complexes in electronic excited states beyond
conventional one-electron transfer. Much of the work has
been devoted to the concept of two-electron mixed valency.
The approach is straightforward: as single-electron mixed-
valence compounds react in one-electron steps[20,21]
two-electron mixed-valence compounds may react in two-
electron steps at the constituent redox sites, whether they are
metal- or ligand-based. This approach does not demand that
each metal react in a concerted two-electron step, rather, it
requires the one-electron mixed-valence species to be kinet-
ically or thermodynamically unstable with respect to the
two-electron species. In this manner, even if the primary pho-
toevent involves single electron transfer, an ensuing redox
event will be facile, thus driving net multielectron reactivity.

The types of two-electron mixed valency that we are
currently investigating are represented schematically in
Scheme 1: (a) bimetallic complexes that rely on ligand
sets favoring a ground-state Mn–Mn+2 species, which is
stabilized relative to its comproportionated and symmetric
Mn+1· · ·Mn+1 congener; (b) porphyrinogens that store two-
electron equivalency in the framework of a macrocyclic lig-
and; and (c) MIII –O–MIII macrocycles tethered to a rigid
spacer that upon excitation produce a two-electron mixed-
valence metal-oxo intermediate, which is a reactive oxidant.
In each case, the two-electron mixed-valence complex is the
critical intermediate for promoting discrete two- and four-
electron transformations. Recent results in areas (a)–(c) are
described in detail below.

2. Two-electron mixed-valence bimetallic complexes

2.1. Hydrogen production using two-electron
mixed-valence photocatalysts

The two-electron mixed-valence approach is ideally
suited to manage the two-electron chemistry of hydro-
gen production and activation. Although the occurrence
of authentic Mn–Mn+2 compounds is uncommon[22],
such complexes can be stabilized by ligand frameworks
that juxtapose�-accepting groups directly adjacent to
�-donating groups. One such construct is embodied by
bis(difluorophosphino)methylamine (dfpma, CH3N(PF2)2)
and bis(bistrifluoroethoxyphosphino)methylamine (tfepma,
CH3N[P(OCH2CF3)2]2) ligand sets that place an amine
bridgehead between two electron-deficient phosphines (PRF

2)
or phosphites (P(ORF)2). These diphosphazane ligands are

distinguished by their ability to drive the internal dispro-
portionation of binuclear M2I,I cores to M2

0,II cores[23]
for the metals rhodium[24,25] and iridium [26–28]. X-
ray crystal structures reveal a pronounced asymmetry in the
diphosphazane framework upon ligation to a bimetallic core
[24]. The result is consistent with asymmetric donation of the
amine bridgehead lone pair to the PRF

2 bonded to MII . With
MII → PRF

2 �-backbonding diminished, the PRF
2 group acts

as a�-donor to stabilize the high-valent MII metal center.
Correspondingly, with the nitrogen lone pair electron density
channeled away from the second neighboring PRF

2 group, its
strong�-accepting properties are maintained and hence M0

is stabilized. In this manner, we believe that the dfpma and
tfepma ligands accommodate the intramolecular dispropor-
tionation of M2

I,I to M2
0,II.

The benefit of designing authentic two-electron mixed-
valence complexes is the ability to effect multielectron redox
chemistry among discrete molecular species. With the met-
als working in concert, two- and four-electron transforma-
tions are promoted along ground- and excited-state path-
ways. As shown inScheme 2, hydrogen halides react with
Rh2

0,0(dfpma)3L2 (L = PPh3) in discrete two-electron steps
to afford the LRh0–RhII X2 and X2RhII –RhII X2 congeners,
respectively[24]. An equivalent of H2 is produced in each
step. By incorporating the same dσ* excited state within the
electronic structure of the LRh0–Rh0L, LRh0–RhII X2 and
X2RhII –RhII X2 cores[29–32], interconversion among the
series members may be accomplished by the elimination of
halogen in two-electron steps[24,25]. The LRh0–Rh0L start-
ing complex can be regenerated as long as a halogen trap is
present, thus permitting the photocycle shown inFig. 1 to
be constructed[33]. In brief, a sacrificial photon removes
an axial CO from the Rh20,0 complex, opening a coordina-
tion site for HX attack (the axial site may also be opened
thermally). Disappearance of the Rh2

0,0 complex is accom-
panied by the formation of 1 equiv. of H2 and the appearance
of a blue species that eventually converts to the LRh0–RhII X2
complex. Photoactivation of the RhII –X bond enables the
photocycle to be closed.

2.2. Hydrides related to two-electron mixed valence
cores

Hydrogen elimination is facile and neither hydrido- nor
hydrido-halide intermediates are observed during turnover
of the photocycle shown inFig. 1. With the goal of char-
acterizing hydride species of two-electron mixed-valence
cores and understanding their dihydrogen chemistry, we
turned our attention to di-iridium complexes owing to the
increased stability of third-row metal-hydride bonds rela-
tive to their second-row counterparts. Our findings, sum-
marized in Fig. 2 for an Ir20,II core ligated by tfepma,
establish that two-electron mixed-valence bimetallic cores
are able to support hydrides and hydrido-halides, and that
these species are of consequence to HX photocatalysis[26].
An especially surprising result is the facility with which H2
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