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• Super/hyper exponential population growth models.
• Selfsimilarity.
• Lamperti transforms.
• Lamperti processes.
• Continuous-state branching process.
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a b s t r a c t

Deterministic population growth models with power-law rates can exhibit a large variety
of growth behaviors, ranging from algebraic, exponential to hyperexponential (finite time
explosion). In this setup, selfsimilarity considerations play a key role, together with two
time substitutions. Two stochastic versions of such models are investigated, showing a
much richer variety of behaviors. One is the Lamperti construction of selfsimilar positive
stochastic processes based on the exponentiation of spectrally positive processes, followed
by an appropriate time change. The other one is based on stable continuous-state branching
processes, given by another Lamperti time substitution applied to stable spectrally positive
processes.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Deterministic population growth models (1) with power-law rates µxγ , µ > 0, can exhibit a large variety of behaviors,
ranging from algebraic (γ < 1), exponential (γ = 1) to hyperexponential (finite time explosion if γ > 1) growth for the size
(or mass) x (t) of some population at time t ≥ 0. The exponential (Malthusian) growth regime with γ = 1 discriminates
between the two other ones and the transition at γ = 1 is quite sharp. In this setup, selfsimilarity considerations (with
Hurst index α = 1/(1−γ )) play a key role, together with two time substitutions. Log-selfsimilarity considerations can also
be introduced while exponentiating the latter model for x (t). In this setup, the discriminating process grows at double
(or superexponential) speed. This discriminating process separates two log-self-similar processes, one growing at exp-
algebraic rate and the other one blowing-up in finite time.

In this manuscript, two stochastic versions of such population growth models with similar flavor are investigated,
showing a much richer variety of behaviors. One is the Lamperti construction of selfsimilar positive stochastic processes
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based on the exponentiation of spectrally positive processes, followed by an appropriate time change. As an example, the
Lamperti diffusion process (22) is studied in some detail, including the noncritical cases. For the critical case withµ = 0 for
instance, we show that the transition γ < 1 to γ > 1 is rather smooth: indeed, if γ < 1, state ∞ is a natural inaccessible
boundary whereas state 0 is exit (or absorbing) and reached eventually in finite time. The population dies out (extinction)
fast. If γ = 1 (when the discriminating critical process is geometric Brownian motion), state ∞ is an entrance state and
state 0 a natural inaccessible boundary. State 0 (extinction) is reached eventually but now not in finite time. If γ > 1, state 0
is a natural inaccessible boundary whereas state ∞ is an entrance state. The process drifts to ∞ (explosion) but not in finite
time. Situations for which there is a finite time explosion can occur but only in noncritical cases when γ > 1 andµ exceeds
some positive threshold. In all cases, depending on γ < 1 (γ > 1), such processes are stochastically selfsimilar with Hurst
index α > 0 (α < 0).

The other one is based on continuous-state branching processes (CSBPs) x (t), as given by another Lamperti time
substitution of spectrally positive processes: in this respect, the a-stable Lamperti CSBP (with a ∈ (1, 2)) and the one-sided
a-stable CSBP (with a ∈ (0, 1)) are investigated in some detail. Both noncritical and critical cases are considered. The critical
version of these models is shown to exhibit self-similarity properties: the obtained Hurst indices are α = 1/ (a − 1) with
range α > 1 and α < −1, respectively. Taking a → 1± yields in the first place the deterministic Malthusian growth model:
x (t) = xe(µ±κ)t . This Malthusian regime separates a situation for which E (x (t) | x (t) > 0) ∝ tα has superlinear algebraic
growth rate (for the a-Lamperti model) and a situation for which x (t) is not regular as it blows up for all time t > 0 (for the
one-sided a-stable model). TheMalthus model is the discriminating critical process of such CSBP population growthmodels
and the situation looks quite similar to the deterministic setup, although much more complex. The transition at a = 1 is
sharp.While considering a different limiting process as a → 1±, we obtain theNeveu CSBPmodelwhich grows a.s. at double
superexponential speed. The critical version of this process is no longer self-similar. It plays the role of the superexponential
discriminating deterministic model separating two log-self-similar models: the exp-algebraic and the blowing-up regimes,
respectively.

2. Deterministic population growth models

2.1. A class of self-similar growth models

Let x (t) ≥ 0 denote the size (mass) of some population at time t ≥ 0, with initially x := x (0) ≥ 0. With µ, γ > 0,
consider the growth dynamics

ẋ (t) = µx (t)γ , x (0) = x, (1)

for some velocity field v (x) = µxγ . Integrating when γ ≠ 1 (the nonlinear case), we get formally

x (t) =

x1−γ + µ (1 − γ ) t

1/(1−γ )
. (2)

Three cases arise:
• 0 < γ < 1: then x ≥ 0 makes sense and in view of 1/ (1 − γ ) > 1, the growth of x (t) is algebraic at rate larger
than 1. We note that x (t, x) := x (t) with x (0) = x obeys the selfsimilarity property: for all λ > 0, t ≥ 0 and x ≥ 0,
x (λt, λαx) = λαx (t, x), with α := 1/ (1 − γ ) > 1, the Hurst exponent. When x = 0, the dynamics has two solutions, one
x (t, 0) ≡ 0 for t ≥ 0 and the other x (t, 0) = (µ (1 − γ ) t)1/(1−γ ) because the velocity field v in (1) with v (0) = 0, is not
Lipschitz as x gets close to 0, having an infinite derivative. The solution x (t, 0) = (µ (1 − γ ) t)1/(1−γ ) with x = 0 reflects
some spontaneous generation phenomenon: following this path, the mass at time t > 0 is not 0, although initially it was.
• γ > 1: then x > 0 only makes sense and explosion or blow-up of x (t) occurs in finite time texp = x1−γ / [µ (γ − 1)].
Up to the explosion time texp, x (t) is selfsimilar with Hurst exponent α = 1/ (1 − γ ) < 0. Whenever x (t) blows up in
finite time, following [1], we shall speak of a hyperexponential growth regime. This model was shown to be meaningful as a
world population growth model over the last two millenaries, [1]. There is also some recent empirical interest into models
with similar behavior in Refs. [2–4]. The finite-time explosion feature, the related interpretation problems and the previous
works about this interpretation have been emphasized in Ref. [5], where the author considers the technological advance of a
given market. More technically, necessary and sufficient conditions for the existence of such a blowing up regime involving
the asymptotic form of the local series representation for the general solutions around the singularities are given in Ref. [6].
• γ = 1: this is a simple special case not treated in (2), strictly speaking. However, expanding the solution (2) in the leading
powers of 1 − γ yields consistently:

x (t) = elog(x
1−γ

+µ(1−γ )t)/(1−γ )

= elog[x
1−γ (1+µxγ−1(1−γ )t)]/(1−γ ) ∼ xe(1/(1−γ ))µx

γ−1(1−γ )t
∼ xeµt . (3)

Here x ≥ 0 makes sense for (1) with x (t) = xeµt for t ≥ 0 if x ≥ 0. This is the simple Malthus growth model. The Malthus
regime with γ = 1 will be called ‘‘discriminating’’ for (1), in the sense that it separates a slow algebraic growth regime
(γ < 1) and a blowing-up regime (γ > 1).
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