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• Simple non-parametric methods that overcome key limitations of the existing literature on both the joint and marginal density
estimation.

• Does not assume any form of the marginal distribution or joint distribution a priori.
• The method circumvents the bandwidth selection problems.
• Compare our method to the kernel density method.
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a b s t r a c t

We introduce very simple non-parametric methods that overcome key limitations of the
existing literature on both the joint andmarginal density estimation. In doing so, we do not
assume any form of the marginal distribution or joint distribution a priori. Furthermore,
our method circumvents the bandwidth selection problems. We compare our method to
the kernel density method.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Each of the existing methods of density estimation (parametric, non-parametric and semi-parametric methods) suffers
serious limitations. For example, one of the limitations of the parametric method is that the distributions need to be
known (see, for example, Refs. [1,2]). The existing non-parametric methods in particular suffer key limitations such as the
bandwidth selection problems and the very high computational cost, among others. Moreover, the non-parametricmethods
still require some assumptions about the form of the distribution, since they require a kernel specification. Recent examples
of the non-parametric approach include Chen [3], Zhang [4], Jones et al. [5], Ruppert et al. [6], Scricciolo [7], Shen et al. [8],
Rousseau [9], Durante and Okhren [10], Hazlett [11] and Weib [12], among many others. Examples of empirical studies
include Sheikhpour et al. [13], Talamakrouni et al. [14], Siddharth and Taylor [15] and Xu et al. [16]. Other studies used
copulas (for a discussion of the copula method and its limitations, see, for example, Ref. [17]).

In this paper, we introduce very simple (yet accurate) non-parametric methods that overcome key limitations of the
existing literature on both the joint and marginal density estimation. In doing so, we do not assume any form of marginal
distribution or joint distribution a priori. That is, we do not need to have any prior knowledge of the distributions. Moreover,
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our method circumvents the bandwidth selection problems. Furthermore, our methods, compared to the existing methods,
are exceedingly simple and fast. We compare our method to the kernel density method. This method can be applied to
numerous areas of physics. Examples include high energy physics, spectroscopy and artificial neural networks (see, for
example, Refs. [18–20]).

2. The joint density estimation

Let F (x, y) be the cumulative joint density of X and Y , then we have

dF (x, y) =
∂F (x, y)

∂x
dx +

∂F (x, y)
∂y

dy;
∂2F (x, y)

∂x∂y
= f (x, y) , (1)

where f (x, y) is the joint density. It is also well known that

∂F (x, y)
∂x

=


f (x, y) dy = fX (x) ;

∂F (x, y)
∂y

=


f (x, y) dx = fY (y) , (2)

∂2F (x, y)
∂x2

=
d2FX (x)

dx2
=

dfX (x)
dx

;
∂2F (x, y)

∂y2
=

d2FY (y)
dy2

=
dfY (y)
dy

, (3)

where fX (x) is the marginal density of X , fY (y) is the marginal density of Y , FX (x) and FY (y) are the cumulative densities
of X and Y , respectively. Substituting (2) and (3) into (1) yields

dF (x, y) = fX (x) dx + fY (y) dy. (4)

Thus,

d2F (x, y) =
∂2F (x, y)

∂x2
(dx)2 +

∂2F (x, y)
∂y2

(dy)2 + 2f (x, y) dxdy

= dfX (x) dx + dfY (y) dy + 2f (x, y) dxdy. (5)

In practical applications (using empirical data),weuse the first difference and the seconddifference instead of the differential
as follows

1F (x, y) = fX (x) 1x + fY (y) 1y, (6)

12F (x, y) = 1fX (x) 1x + 1fY (y) 1y + 2f (x, y) 1x1y. (7)

Therefore, the joint density can be calculated (for each observation of the data) as follows

f̂ (x, y) =
12F (x, y) − 1fX (x) 1x − 1fY (y) 1y

21x1y
. (8)

Clearly, x and y are observed data; 1F (x, y) can be calculated for each observation using (6) if the marginal densities are
known or estimated, and it is needless to say that 12F (x, y) is the first difference of 1F (x, y). In sum, the joint density can
be easily calculated if the marginal densities are known. However, we can easily estimate the marginal densities (see the
next section).

If we use the finite difference method to estimate (8), the estimation error o (.) is given by

f̂ (x, y) = f (x, y) + o

1x2, 1y2


. (9)

Therefore

Bias

f̂ (x, y)


= Ef̂ (x, y) − f (x, y) = Eo


1x2, 1y2


,

MSE = E

f̂ (x, y) − f (x, y)

2
= Eo


1x2, 1y2

2
,

where MSE is the mean squared error.

Var

f̂ (x, y)


= Eo


1x2, 1y2

2
−

Eo

1x2, 1y2

2
,

MISE = E
 

f̂ (x, y) − f (x, y)
2

dxdy = E


o

1x2, 1y2

2
dxdy,

where MISE is the mean integrated squared error.

AMISE = 0,
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