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Abstract

Brańczyk et al. pointed out that the quantum control scheme is superior to the classical control scheme for a simple quantum
system using simulation [A.M. Brańczyk, P.E.M.F. Mendonca, A. Gilchrist, A.C. Doherty, S.D. Barlett, Quantum control theory
of a single qubit, Physical Review A 75 (2007) 012329 or arXiv e-print quant-ph/0608037]. Here we rigorously prove the result.
Furthermore we will show that any quantum operation does not universally “correct” the dephasing noise.
c© 2007 Elsevier B.V. All rights reserved.

Keywords: Quantum control; Quantum information; Quantum channel; Quantum noise; Classical control

1. Introduction

Recently, Brańczyk et al. considered the classical and quantum control for a simple quantum system in Ref. [2].
They considered the following operational task: a qubit prepared in one of the two non-orthogonal states |ψ1〉 or |ψ2〉

(with overlap 〈ψ1|ψ2〉 = cos θ for 0 ≤ θ ≤
π
2 ) is transmitted along a quantum channel with the dephasing noise,

i.e., with probability p a Pauli operator Z is applied to the system, and with probability 1 − p the system is unaltered,
where Z |0〉 = |0〉, Z |1〉 = −|1〉 and {|0〉, |1〉} be a basis for the qubit Hilbert space. The noise is thus described by
a quantum operation, i.e., a completely-positive trace-preserving (CPTP) map Ep, that acts on a single-qubit density
matrix ρ as

Ep(ρ) = pZρZ + (1 − p)ρ. (1)

Suppose the noisy channel is to be fully characterized, meaning that p is known and without loss of generality in
the range 0 ≤ p ≤ 0.5. Two initial states to be oriented are chosen as
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where |±〉 = (|0〉 ± |1〉)/
√

2, in which their distinguishability is maintained under the dephasing noise by their trace
distance. It is easy to see Z |+〉 = |−〉, Z |−〉 = |+〉.

To quantify the performance of control scheme, the average fidelity is used to compare the noiseless input states
|ψi 〉 with the corrected output states ρi . Assuming an equal probability for sending either state |ψ1〉 or |ψ2〉, the
performance index is
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2
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=
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2
〈ψ1|ρ1|ψ1〉 +

1
2
〈ψ2|ρ2|ψ2〉, (3)

where the fidelity between a pure state |ψ〉 and a mixed state ρ is defined as F(|ψ〉, ρ) ≡ 〈ψ |ρ|ψ〉. The fidelity F
ranges from 0 to 1 and is a measure of how much the two states overlap each other (a fidelity of 0 means the states
are orthogonal, whereas a fidelity of 1 means the states are identical). It has the following simple operational meaning
when the input state is pure: the fidelity F(|ψi 〉, ρi ) is the probability that the state ρi will yield outcome |ψi 〉 from
the projective measurement {|ψi 〉〈ψi |, |ψ

⊥

i 〉〈ψ⊥

i |}. They considered two kinds of control schemes, i.e., classical and
quantum schemes, to “correct” the system without knowing which state was transmitted, i.e., undo the effect of the
noise, through the use of a control scheme based on measurement and feedback.

Classical control
For the considered case, the optimal measurement given by Helstrom [3] is a projective measurement onto the basis

{|0〉, |1〉} in terms of maximizing the average probability of a success, which successfully discriminates the states |ψ1〉

and |ψ2〉 with probability PHelstrom =
1
2 (1 + sin θ). Then an entanglement-breaking trace-preserving (EBTP) scheme

is used [4,8], which arises because the output system is unentangled with any other system, regardless of its input
state. Through this scheme the optimal performance was proved to be
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when preparing states

|Ψ±
〉 =

√
1
2

±
sin2 θ

2γ
|0〉 +

√
1
2

∓
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2γ
|1〉 (5)

corresponds to measurement results 0, respectively, 1 where γ =

√
cos2 θ + sin4 θ.

Do nothing
Doing nothing to correct the states is also a classical control strategy. The average fidelity of this scheme is given

by

FN = 1 − p cos2 θ. (6)

Random preparation
Another control strategy would be to prepare the states randomly with probability 1

2 , i.e., 1
2 |ψ1〉〈ψ1| +

1
2 |ψ2〉〈ψ2|,

which is not considered in Ref. [2]. Although trivial, this strategy is of interest for comparison with other schemes.
This scheme also is not described by an EBTP map, but we will nonetheless refer to it as “classical”.

The average fidelity of this scheme is given by

FE =
1
2
(1 + cos2 θ). (7)
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