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h i g h l i g h t s

• Stochastic SIS model with nonlinear incidence rate is established by perturbing transmission coefficient.
• The threshold valueR0 is obtained to determine extinction and weak permanence of the disease in probability.
• The sufficient condition on permanence in the mean of the disease with probability one is showed.
• Numerical simulations are presented to illustrate some open problems.
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a b s t r a c t

In this paper, a class of stochastic SIS epidemic models with nonlinear incidence rate is
investigated. It is shown that the extinction and persistence of the disease in probability
are determined by a threshold valueR0. That is, ifR0 < 1 and an additional condition holds
then disease dies out, and ifR0 > 1 then disease is weak permanent with probability one.
To obtain the permanence in the mean of the disease, a new quantity R0 is introduced,
and it is proved that ifR0 > 1 the disease is permanent in the mean with probability one.
Furthermore, the numerical simulations are presented to illustrate some open problems
given in Remarks 1–3 and 5 of this paper.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

As is well known, our real life is full of randomness and stochasticity. So there aremore real benefits to be gained in using
stochastic models. Particularly, stochastic models can provide us some additional degrees of realism in comparison to their
deterministic counterparts. The relative descriptions can be found in Refs. [1–4].

There are different possible approaches which result in different effects on a population system or epidemic system to
include randomness and stochasticity in themodels. Typically, the following three approaches are seenmost often. The first
one is to directly perturb parameters of deterministic model by Gaussian white noise (see Refs. [4–19]). The second one is to
assume that stochastic perturbations are around positive equilibrium of deterministic models (see Refs. [19–26]). The last
one is the assumption that systems or models will switch from one regime to the other according to the probability law of
the Markov chain (see Refs. [27–29]).

In recent years, various stochastic versions of epidemic models are established by using the method of parameters
perturbation, and the dynamical properties of thesemodels are alsowidely investigated. Themain research subjects include
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the existence and uniqueness of positive solutionwith any positive initial value in probability, the persistence and extinction
of the disease in probability, the asymptotical behaviors in probability around the disease-free equilibrium and the endemic
equilibrium of the corresponding deterministic models, the existence and uniqueness of stationary distribution as well
as ergodicity, etc. Many important results have been established in many articles, for example, see Refs. [4–28] and the
references cited therein. Especially, in terms of the persistence and extinction for the disease, articles [9,10,12–15,17–19]
provided for us some very valuable conclusions. In Ref. [9], a stochastic SIS epidemic model with constant population size
is constructed. The authors not only obtained the existence of the unique global positive solution with any positive initial
value, but also established threshold value conditions for extinction and persistence of the disease. Furthermore, in the case
of the persistence, the authors also showed the existence of a stationary distribution and finally computed the mean value
and variance of the stationary distribution. In Ref. [12], a class of stochastic SIS epidemic models with bilinear incidence
and vaccination is studied. The authors established the sufficient conditions for extinction and persistence in the mean of
the disease. In Refs. [13–15,17], authors studied a class of stochastic SIRS epidemic models with the bilinear incidence or
saturation incidence given by function βSI

1+ω1S+ω2I
(see model (3) in Ref. [13], model (2) in Ref. [14], model (7) in Ref. [15] and

model (1.2) in Ref. [17]). The sufficient conditions for the existence and uniqueness of global positive solution, the extinction
and persistence in the mean of the disease are investigated. In Ref. [18], the authors proposed a class of impulsive periodic
stochastic SIR epidemic models with bilinear incidence, sufficient conditions for the existence and uniqueness of global
positive solution and the disease-free periodic solution, the extinction and weak persistence in the mean of the disease
are obtained. In Ref. [19], A class of stochastic SIQS epidemic models with nonlinear incidence is studied. The sufficient
conditions for the existence of global positive solutions, the extinction of disease and the existence of a unique stationary
distribution are established.

Motivated by the above works, in this paper, we consider the following deterministic SIS epidemic model with nonlinear
incidence rate

dS(t)
dt

= Λ − βS(t)g(I(t)) + γ I(t) − µS(t),

dI(t)
dt

= βS(t)g(I(t)) − (µ + γ + α)I(t).
(1)

In model (1), S(t) and I(t) denote the numbers of susceptible and infectious individuals at time t , respectively. Λ is the
recruitment rate of S, µ is the natural death rate of S and I , α is the disease-related death rate of I , γ is the recovery rate
of I . The transmission of the infection is governed by a nonlinear incidence rate βSg(I), where β denotes the transmission
coefficient between compartments S and I , and g(I) is a continuously differentiable function of I . All parameter values are
assumed to be nonnegative and Λ, µ > 0.

Now, we assume that the fluctuations in the environment will manifest themselves mainly as fluctuations in the
transmission coefficient β of disease, that is, β → β + σ Ḃ(t), where B(t) is an one-dimensional standard Brownian motion
defined on some probability space and parameter σ > 0 represents the intensity of B(t). Thus, model (1) will be changed
into the following stochastic SIS epidemic model with nonlinear incidence rate

dS(t) = [Λ − βS(t)g(I(t)) + γ I(t) − µS(t)]dt − σ S(t)g(I(t))dB(t),
dI(t) = [βS(t)g(I(t)) − (µ + γ + α)I(t)]dt + σ S(t)g(I(t))dB(t).

(2)

In this paper, we will discuss the long-time dynamical behaviors of model (2). Particularly, as the main purpose, we will
investigate the extinction, weak permanence and permanence in the mean of disease with probability one, and establish
the corresponding sufficient conditions. Furthermore, we will validate the main conclusions obtained in this paper by the
numerical simulations.

The reminder of this paper is organized as follows. The next section introduces the preliminaries and someuseful lemmas.
Section 3 investigates sufficient conditions for extinction of the disease in model (2) with probability one. In Section 4, we
establish sufficient conditions which ensure that the disease in model (2) is weakly permanent and permanent in the mean
with probability one. Then, in Section 5, numerical simulations are carried out to illustrate the main theoretical results.
Finally, a brief discussion is given in the end to conclude this work.

2. Preliminaries

Denote R2
+

= {(x1, x2) : x1 > 0, x2 > 0}, R+0 = [0, ∞) and R+ = (0, ∞). Throughout this paper, we assume that model
(2) is defined on a complete probability space (Ω, {Ft}t≥0, P) with a filtration {Ft}t≥0 satisfying the usual conditions, that is,
{Ft}t≥0 is right continuous and F0 contains all P-null sets.

For function g(I) we further introduce the following assumption

(H) g(I) is continuously differentiable on R+0,
g(I)
I is monotone decreasing on R+, g(0) = 0 and g ′(0) > 0.

Under assumption (H), it is clear that g(I) is Lipschitz continuous on R+0 and 0 < g(I) ≤ g ′(0)I for all I > 0.
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