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h i g h l i g h t s

• A generalized linear fractal Langevin-type equation driven by nonconserved and conserved noise is proposed.
• The scaling behaviors of this equation are investigated theoretically by scaling analysis.
• Corresponding dynamic scaling exponents are very consistent with the numerical results of simulation.
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a b s t r a c t

In order to study the effects of the microscopic details of fractal substrates on the scaling
behavior of the growthmodel, a generalized linear fractal Langevin-type equation, ∂h/∂t =

(−1)m+1ν∇
mzrwh (zrw is the dynamic exponent of random walk on substrates), driven by

nonconserved and conserved noise is proposed and investigated theoretically employing
scaling analysis. Corresponding dynamic scaling exponents are obtained.

© 2016 Elsevier B.V. All rights reserved.

The kinetic roughening of surfaces and interfaces under non-equilibrium conditions has been a subject of great interest
in the last two decades, due to their relations to various physical phenomena such as crystal growth, bacterial growth,
molecular beam epitaxy (MBE), fluid in porous, and fracture cracks among others [1–4]. A common feature of many
interfaces observed experimentally or in discrete growth models is that their roughening follows simple scaling laws [5].
The morphology and dynamics of a rough interface can be characterized by the surface width,W (L, t), that scales as

W (L, t) ≡ ⟨[h(x, t) − h(t)]2⟩1/2 (1)

where L is the linear size and d is the dimension of the substrate. h(x, t) is the local height variable of the interface, and
h(t) is the mean height of the interface at time t . In many cases, starting from an initially flat substrate, the surface width is
observed to satisfy the dynamic scaling form of Family–Vicsek [5]

W (L, t) = tβ f (L/t1/z), (2)

with the scaling function f (u) behaves as f (u) ∼ uα if u ≪ 1, and f (u) ∼ const if u ≫ 1. The roughness exponent α and the
dynamic exponent z determine the asymptotic behavior of growing interfaces on a large distance and long time scale. The
ratio β = α/z is called growth exponent and describes the short time behavior of the surface.
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One of the widely used methods of getting these scaling exponents is applying a numerical or analytical approach to the
associated stochastic evolution equations (usually Langevin-type) that describe the interface growth processes. Diffusion,
with additive noise, is the fundamental element. Generally, the d+1-dimensional Langevin-type equation can be described
as

∂h(x, t)
∂t

= Ψ (∇h) + η(x, t), (3)

where the function Ψ (∇h) defines a particular model and incorporates the relevant symmetries and conservation laws.
Surface growth is driven by an external noise η(x, t), which represents the influx of particles in deposition processes. The
noise, usually, has zero mean and correlations
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for conserved one, with D and Dc specify the noise amplitude for nonconserved noise and conserved noise, respectively.
A seminal example of this kind of stochastic dynamic equations is the well-known Edwards–Wilkinson (EW) equation [6],
which is given as

∂h
∂t

= ν∇
2h + η (x, t) . (6)

The first term on the right hand side describes the relaxation of interface caused by a surface tension ν. Other equations,
such as the Kardar–Parisi–Zhang (KPZ) equation [7], were also proposed. The analytical tools nowwidely used to investigate
the scaling behaviors of these Langevin-type equations are the scaling analysis [8], the dynamic renormalization group
technique [9,10], the mode coupling method [11], and so on.

Among previous theoretical investigations of continuumequations, aswell as numerical simulations of discrete atomistic
models, muchmorewere performed on regular or Euclidean substrates with integer dimension, however, less were devoted
to fractal substrates. As a result, there is no simple and clear understanding about the interplay between the dynamical
growth rules of the system and the self-similarity of fractal structures until the recent works [12–20].

It was found that the dynamic scalings on fractal substrates were not consistent with the known results of the EW
equation. Lee and Kim [12] argued that the term ∇

2h in the EW equation has symmetries under inversion and rotation
in the x space. However, on a fractal substrate, the diffusion is anomalous and the dynamic exponent of random walks zrw ,
defined by the root mean-square end-to-end distance via ⟨R2

⟩ ∼ t2/zrw , is larger than 2. Also, no symmetry exists under
either inversion or rotation on usual fractal substrates. Therefore, the term associated with diffusion ∇

zrwh was assumed,
and the fractal Langevin equation

∂h
∂t

= ν∇
zrwh + η (x, t) (7)

was introduced [12]. Utilizing the scaling analysis, this fractal equation can be solved exactly, leads to β = 1/2 − ds/4,
α = df (1/ds − 1/2), z = 2df /ds, and the scaling relation 2α + df = z. ds is the spectral dimension defined by the density
of normal modes on fractal lattices via ρ(ω) ∼ ωds−1 and df is the dimension of the fractal substrate. Here the dynamic
exponent of random walks on a fractal substrate is given as zrw = 2df /ds. The equilibrium restricted solid-on-solid (RSOS)
model and the Familymodel on fractal substrates were studied [13,14], and the results proved the universality of this fractal
equation.

In one of their recent works, Kim and co-workers [15] performed numerical simulations on the surface structures of
the equilibrium restricted curvature (ERC) model on a Sierpinski gasket substrate and obtained the results that α ≈ 1.54,
β ≈ 0.323 and z = α/β ≈ 4.78. The scaling exponents derived satisfied the relations 2α + df ≈ z and z ≈ 2zrw very
well [15]. To describe this discrete model on fractal substrates, they introduced the fractional Langevin equation [15], which
is called the fractal Mullins–Herring (MH) equation, written as

∂h
∂t

= −ν∇
2zrwh + η(x, t). (8)

Employing the scaling analysis as used previously, the linear fractal MH equation can be solved exactly by giving
β = 1/2 − df /4zrw , α = (2zrw − df )/2, and z = 2zrw . It can be seen that there exists a scaling relation 2α + df = z.
After that, the validity of the fractional MH equation and the scaling relation were confirmed by numerical work [16].

In this paper, to probe the effects of the microscopic details of fractal substrates on the scaling behavior of the growth
model deeply, the generalized linear fractal Langevin-type equations, driven by both nonconserved and conserved noise,
are proposed and investigated theoretically based on scaling analysis. The corresponding dynamic scaling exponents are
obtained.
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