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h i g h l i g h t s

• Mapping external into internal reservoirs can yield equivalent entropy production.
• Only heat fluctuation can distinguish an external from an internal reservoir.
• The best approximation to coloured reservoirs is its white-noise analogue.
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a b s t r a c t

Within the spirit of van Kampen’s ‘‘Langevin approach’’, we discuss the limits of validity
of rephrasing the non-equilibrium problem of a particle subject to an external (work)
reservoir – a system where the fluctuation–dissipation relation is not verified – into the
simpler casewith an internal (heat) reservoir forwhich the fluctuations and the dissipation
arise from the same source. Using a convenient mapping of the thermomechanical
parameters we show that, counter-intuitively, such approach is not only valid for steady
state time independent quantities, but also for timedependent thermostatistical quantities,
namely the injected and dissipated fluxes. We connect this result with the problem of
large deviations and conclude that, in this context, we can only distinguish reservoirs by
analysing the ‘‘fluctuations of accumulated fluctuations’’. As a by-product, we learn that the
best reference approximation to the large deviation functions of a non-Markovian external
reservoir system is not the respective internal reservoir limit – as often assumed and
suggested by the Langevin approach – but its internal reservoir analogue system obtained
from the mapping of the original thermomechanical parameters.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

One of the most typical ways of tackling a problem in Physics – and get the solution thereto – is to cast the respective
model in a simpler way by redefining the variables/parameters or introducing a phenomenological approach which
preserves the backbone of the problem. Concerning the latter, the use of models inspired in the Langevin Equation (LE) is
one of the most employed methods [1,2]; it has a widespread field of applications and has played a relevant role in surveys
over the thermostatistical properties of systems far from the thermodynamic limit [3]. Perhaps, the most striking feature of
the LE is that in problems of non-equilibrium statistical mechanics, it permits the direct (statistical) characterisation of the
position, x = x(t), and velocity, v = v(t) ≡ dx/dt , as well as probing the relation between the fluctuation and dissipation in

∗ Corresponding author.
E-mail address: sdqueiro@gmail.com (S.M. Duarte Queirós).

1 Associate to National Institute of Science and Technology for Complex Systems, Brazil.

http://dx.doi.org/10.1016/j.physa.2016.01.029
0378-4371/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.physa.2016.01.029
http://www.elsevier.com/locate/physa
http://www.elsevier.com/locate/physa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physa.2016.01.029&domain=pdf
mailto:sdqueiro@gmail.com
http://dx.doi.org/10.1016/j.physa.2016.01.029


J.R. Medeiros, S.M. Duarte Queirós / Physica A 451 (2016) 84–94 85

the system, which is the upshot of the fluctuation–dissipation theorem [4]. The way the two physical effects are connected
(or not) dictates the nature of the reservoir. According to [1], a reservoir is:
• internal (IntRes) if it allows establishing the dissipation as a property of the reservoir, the fluctuation–dissipation relation

is verified and the corresponding theorem as well;
• external (ExtRes) if the effects of dissipation and fluctuation that are taking place have different origins and thus the

fluctuation–dissipation relation is not verified.

The quintessential IntRes corresponds to the diffusion problem of Brownian motion as treated by Einstein, where the
water acts as the reservoir. The random impacts of the water molecules in the pollen grain are the cause of both the
dissipation and the fluctuations. Furthermore, since a pollen grain is weightier than water molecules,2 the noise correlation
function falls off very rapidly (typically 10−8 s) and thus the noise, η, that is responsible for the fluctuation is nicely
reproduced by a white noise,

⟨η (t2) η (t1)⟩c = 2 γ T δ (t2 − t1) , (1)
where γ is the dissipation coefficient and T is the temperature of the bath (throughout this paper kB = 1). For a significantly
dense medium, η is Gaussian as well. Thence, if we consider a system composed of a particle with mass, m, that is subject
to a confining potential, V = V (x), we get a dynamics is ruled by,

m
d2x
dt2
= −γ

dx
dt
−

dV
dx
+ η (t) . (2)

Later, Mori and Kubo [5] surveyed the problem of a reservoir the particles of which have got a mass of the same order
of magnitude of the focal particle. In that case, the fluctuations cannot be white noise, but they have the same source as
dissipation still. In order to square such type problem within the IntRes scenario, Eq. (2) was generalised to,

m
d2x
dt2
= −

 t

t0
κ

t − t ′

  dx
dt ′


dt ′ −

dV
dx
+ ξ (t) . (3)

For this non-Markovian problem, the fluctuations – which although Gaussian are now represented by ξ(t) – and the
dissipation are defined by,

⟨ξ (t2) ξ (t1)⟩c =
γ

τ
T exp


−
|t1 − t2|

τ


, κ (t1 − t2) =

γ

τκ

exp

−
|t1 − t2|

τκ


, (4)

with τκ = τ , which guarantees that both spectra scale equally. In the limit (τ → 0, τκ → 0), Eq. (4) reads,

⟨ξ (t2) ξ (t1)⟩ = 2 γ T δ (t2 − t1) ,

 t

t0
κ

t − t ′

  dx
dt ′


dt ′ = γ

dx
dt

(5)

and Eq. (2) matches with Eq. (3) [η(t) ≡ ξτ→0(t)].
It is not hard to grasp that when τ ≠ τκ , the source of the fluctuations has nothing to dowith the origin of the dissipation,

resulting in an ExtRes situation. The simplest ExtRes situation corresponds to τ ≠ 0 and τκ → 0,

m
d2x
dt2
= −γ

dx
dt
−

dV
dx
+ ξ (t) , (6)

and Eq. (4) keeps on being valid for ξ(t).
The definitive instance of a system described by Eq. (6) is a particle in a frictional medium subject to a coloured random

force [6–8]. This can be set up, e.g., by inserting a charged particle in liquid helium (above superfluid phase though) – or
any other situation where thermal noise is negligible in comparison with the fluctuations due to the external source –
and applying a coloured Gaussian electric field to it. Additionally, we can refer to experiments with dye lasers [9] and
laser gyroscopes [10] where this type of reservoir emerges as well as models for biological processes such as neuronal
dynamics [11].

The description of IntRes and ExtRes cases helps understand that the two types of reservoirs are often distinguishable by
the way they affect the energy of the system: while the IntRes is always a heat reservoir, the ExtRes frequently corresponds
to a work reservoir, i.e., it changes the energy of the system by performing work on it.

Herein, an important point pertains to calling the quantity T (Eq. (4)) the temperature of the ExtRev system (6).
Although its properness might be disputed within a cautious Thermodynamical parlance, we will use that terminology
upholding our decision on the fact that T has energy units (kB = 1) and provides us with a typical scale of the fluctuations
of velocity and position induced by the ExtRes (e.g., in the form of positive/negative work performed on the system).
Such broad understanding of the concept of temperature has been recently employed in the statistics of vortices in
superconductors whence an athermal formalism – absolutely analogous to standard Thermodynamics – was derived [12].
Moreover, alternative definitions of temperature concurring with equipartition and fluctuation–dissipation relations were
introduced in the field of stochastic dynamics with non-Gaussian reservoirs as well [13].

2 A typical pollen grain is 104 times as weighty as a molecule of water.
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