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h i g h l i g h t s

• Two coupled S = 1/2 quantum spinchains are examined.
• Quasiparticles with generalized spin are introduced.
• Surface effects are eliminated.
• Formation of energy gap is verified.
• Emergence of generalized spin polarization for ground state.
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a b s t r a c t

Quantum spinchains are often used to model complex behavior in condensed matter
systems that display long range correlations. When two or more quantum spinchains
interact, they also exhibit spin transport and model finite nanomagnetic layers. Here,
we investigate properties of two coupled S = 1/2 quantum spinchains in the finite
limit, where spurious surface artifacts are present. Our results show the introduction of
new fermionic modes with one additional degree of freedom eliminates the artifacts, in
an effective one-dimensional finite lattice. In this setting, the mean field approximation
is robust and enables the evaluation of energy levels and the energy gap. Moreover,
quasiparticle polarization due to interchain coupling is verified and explains the emergence
of spin polarization in uniform materials.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Simultaneous control of both electric and spin currents is the main goal in the development of new and efficient
semiconductor devices. The flow of electronic spin, or spin current, adds one extra degree of freedom to information
storage mechanisms and also allows new methods to manipulate the electron dynamics. Multilayered magnetic materials,
which exhibit spin currents, have already found several scientific and technological applications such as spin valves [1]
and tunneling magnetic junction [2,3]. So far, injection of electric currents through asymmetrical magnetic layers has been
the standard way to control spin density near interfaces [4–6]. Injection of spin polarized electric currents in adjacent
ferromagnetic layers gives rise to spin torque [7] and spin pumping [8] phenomena.

The spin torque also occurs with non-polarized currents in materials with strong spin–orbit interaction [9] such
as (Ga,Mn)As. These materials possess fairly uniform chemical composition, avoiding additional lithographic patterns
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altogether, thus, easier to integrate current technologies. This example illustrates that both material composition and
interactions are relevant to observation of spin currents or spin related effects. Interactions become even more relevant
in the nanometric regime, where surface effects are comparable to bulk contributions. As consequence, the band structure
is also modified in the finite regime, leading to corrections to spin transport properties as well. In addition, the finite size of
magnetic layers or nanostructures imposes strong constraints to the wave functions and long range correlations [10].

Here, we study two interacting quantum spinchains as a surrogate for a magnetic bilayer, exploiting the fact their
dynamics should be similar for very small lattice sizes. Our goal is to extract the microscopic conditions and constraints
that allow the development of spin current and spin polarization between two distinct uniform layers. We consider a
fermionic model with m = 2 interacting S = 1/2 quantum spinchains, R1 and R2, with L sites each, subjected to periodic
boundary conditions and separated by a spatial distance d. They constitute a ladder or quasi-unidimensional spinchain [11].
This class of composite system has a rich physical content [12–16], where spin–spin spatial correlation depends on the
numberm of chains [17] and the interaction between the spinchains promotes variations in magnetization for each lattice.
The Jordan–Wigner fermionization procedure [18] is employed to map the local dynamics within each spinchain. In this
procedure, localized spin operators are transformed into spinless fermions operators and the interchain interaction is
modeled as the exchange of spinless fermions. To describe the underlying dynamics of coupled spinchains, we identify
the relevant fermionic modes, which possess one additional degree of freedom similar to the spin, σ , associated with the
J̄ = 1 deformed angular momentum. The energy levels are calculated and the emergence of an energy gap1Eg is observed,
in themean field (MF) approximation. For non-vanishing coupling λ, the ground state exhibits spontaneous σ -polarization.

2. The model

Quantum spinchains are one-dimensional periodic lattices in which each site k = 1, 2, . . . , L holds localized spin
operators, Sαk (α = x, y, z,±). They are often used to model magnetism in matter since they are able to produce long
range correlation [19], as verified from their epitaxy [20,21]. These strongly correlated systems are usually associated
with cooperative phenomena and critical phase transitions. Such critical phases are characterized by gapless eigenspectra,
providing long range correlations. For finite quantum systems, the energy spectra also depend on parity the of L [20], tying
lattice size with magnetic ordering and the characterization of spin currents and spin mobility [22]. Moreover, the number
m of coupled spinchains also affects the existence of the energy gap. From Haldane conjecture [23,24], valid for spin S ≫ 1,
it is often inferred S = 1/2 ladders have a non-null energy gap form even [25,26], gapless otherwise.

Among the various quantum spinchains available, the most well-known is the S = 1/2 Heisenberg model (HM). In the
HM, the local spin–spin couplingmimic the Coulomb interactions, explaining themagnetic ordering of ground state and the
emergence of long range order. The HM hamiltonian is:
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where σ a
k (a = x, y, z) are the localized Pauli matrices, J is the exchange interaction coupling and ∆ ∈ R is the axial

anisotropy. The case ∆ = 0 is the planar XY model, while ∆ = 1 is the ferromagnetic (antiferromagnetic) Heisenberg
model for J > 0 (J 6 0). The axial anisotropy plays an important role in any magnetic environment as isotropic systems are
unable to establish long-range correlations for any temperature [27,28]. Another outstanding feature is the exact solution
via Bethe ansatz [29]. In particular, for the coupling range |∆| < 1/2 the HM is critical and the system exhibits long range
order. The coupled S = 1/2 quantum spinchainmodel considered in this study takes the HM as foundation, inheritingmany
of the mathematical methods and physical properties. In what follows, we describe the model, the coupling mechanisms
and the striking finite size effects.

Let Ri (i = 1, 2) label two quantum spinchains, both containing L site and distant from each other by a spatial distance
d and periodic boundary conditions, as Fig. 1 depicts. In analogy to HM, we define the operators σik for spinchain Ri at site
k = 1, . . . , L. For large d, the interchain coupling vanishes. Therefore, the intrachain interactionsHi are described by the HM
with the following modifications:∆ → ∆i and σkσk+1 → σikσik+1 for each chain Ri,
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As R1 and R2 are brought together, the interchain interactions become more relevant. If the system develops an energy
gap during this process, as hinted by Haldane conjecture, the Jordan–Wigner (JW) fermionic approach [18] is a suitable
method. The main idea in the JW transformation is to obtain a new set of fermionic operators cik and cĎik from σ−

ik and σ+

ik ,
respectively, with σ±

ik = (σ x
ik ± ıσ y

ik)/2. The fermionic behavior requires the anticommutation rule {cik, c
Ď
jl } = δijδkl whereas

the σ±

ik operators share both fermionic and bosonic rules. Hence, the JW transformation removes any bosonic contribution
from site operators, which is the necessary condition to the proper interpretation of new fields cik as fermions. Despite the
well-defined algebraic relations, the newparticles are constructed from the physical spin and therefore lack internal degrees
of freedom. Due to this observation, the JW fermions are spinless fermions. The spinless fermionic destruction operator c1k,
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