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h i g h l i g h t s

• Multifractal Value at Risk (MFVaR) is developed in consideration of the multifractal property of financial time series.
• MFVaR is a parametric model and not based on simulation.
• MFVaR can provide a stable and accurate forecasting performance in volatile financial market where large loss can be incurred.

a r t i c l e i n f o

Article history:
Received 15 March 2015
Received in revised form 29 November
2015
Available online 1 February 2016

Keywords:
Value at Risk
Multifractality
Binomial multifractal model
Multifractal model of asset return
Financial time series

a b s t r a c t

In this paper new Value at Risk (VaR) model is proposed and investigated. We consider
the multifractal property of financial time series and develop a multifractal Value at
Risk (MFVaR). MFVaR introduced in this paper is analytically tractable and not based on
simulation. Empirical study showed that MFVaR can provide the more stable and accurate
forecasting performance in volatile financial markets where large loss can be incurred. This
implies that our multifractal VaR works well for the risk measurement of extreme credit
events.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Financial time series have various stylized facts and some of which are not sufficiently explained by conventional
statistical models. The application of multifractal model to financial time series is a rigorous approach for the analysis of
these stylized facts such as heavy tailed distribution, volatility clustering, long memory, and scaling property.

Lux [1], Calvet and Fisher [2], Bacry, et al. [3] andWei andWang [4] showed thatmultifractal approaches have advantages
to analyze stylized facts observed in financial market data. Bartolozzi et al. [5], Kumar and Deo [6], Morales et al. [7], Morales
et al. [8] and Lee and Chang [9] dealt with time varying multifractal properties in financial time series.

Kantelhardt et al. [10] proposed a multifractal detrended fluctuation analysis (MF-DFA) for the reliable measurement
of multifractal scaling behavior of nonstationary time series. Horvatic et al. [11] provided a detrended cross-correlation
analysis for measuring the multifractality level in nonstationary time series with periodic trends.

Barunik et al. [12] studied the source of multifractality in financial time series and concluded that the heavy tail
distribution is themain cause ofmultifractality. Grech andMazur [13], Grech and Pamuła [14], and Caraiani [15] claimed that
the better understanding of dynamics of multifractality in financial data makes the more accurate financial crisis forecast.
Zunino et al. [16], Zunino et al. [17], Oh et al. [18], and Sensoy [19,20] studied multifractal properties in various financial
markets and provided some evidence of the close relationship between multifractality and market efficiency.
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The measurement of financial risk based on multifractal analysis is restricted to the simulation based Value at Risk
(VaR) model. Liu and Lux [21] and Calvet and Fisher [22] computed VaR in the US bond market and the exchange market
for USD/AUD through simulation based on the Markov switching bivariate multifractal model. Bacry et al. [3] and Batten
et al. [23] measured VaR in exchange market using multifractal random walk (MRW) [24] and multifractal model of asset
returns (MMAR) [25] respectively. Bogachev and Bunde [26] introduced a historical VaR estimation method considering
multifractal property of data.

In this paper, we introduce a novel type ofmultifractal Value at Risk (MFVaR), which is designed using theMMAR process
of Mandelbrot et al. [25] with the binomial multifractal measure. MFVaR is a parametric risk measure and analytically
tractable. We computed MFVaR for the Korean and US stock market indices (KOSPI and S&P500) and currency exchange
(USD/KRW) daily data. Our MFVaR are compared with other benchmark VaR method such as Gaussian, t-distribution, and
GARCH simulation method, and showed more stable and accurate results than those obtained from other conventional
methods especially in the volatile foreign exchange market data.

The remaining structure of this paper is as follows. Some theoretical background for MFVaR is reviewed in Section 2. The
details of MFVaR model is provided in Section 3, and the application of MFVaR to the real market data and its comparison
with other conventional VaR models are provided in Section 4. Section 5 presents summary and conclusion.

2. Theoretical background

In this section, we review the Multifractal properties and the related research since Mandelbrot et al. [25]. Binomial
multifractal measure and the time deformation concept are described and how to estimate the model parameters is
introduced.

2.1. Multifractal property

When a time series, X(t), satisfy the property in Eq. (1), X(t) is called a self-similar process.

{X(λt)} d
={λHX(t)} (1)

where H is a scaling exponent or Hurst exponent and controls the long memory property of X(t). When the increment of
X(t), X(t + τ)−X(t), is stationary, H exists between 0 and 1. When H is 0.5, increments are independent. If H is larger than
0.5, X(t) is persistent and have long memory property in returns, while X(t) is antipersistent if H is smaller than 0.5 [27].

The fractal dimension, D, is expressed using H as follows (see Refs. [28–30]).

D = 2 − H. (2)

While monofractal processes such as self-similar process have a constant fractal dimension, and multifractal processes
have multiple fractal dimensions. The following scale property of time series in Eq. (1) distinguishes multifractal processes
from monofractal processes.

E[|X(t + τ) − X(t)|q] ∼ τ ζX (q) (3)

where ζX (q) is a scaling function. When X(t) is multifractal, ζX (q) exhibits a nonlinear (concave) formation, and ζX (q)
becomes linear (ζX (q) = Hq) when X(t) is monofractal (e.g. self-similar process).

2.2. Review of multifractal time-series models

LetX(t) be the log-price of financial asset. Based onmultifractalmodel of asset returns (MMAR),X(t) iswritten as follows.

X(t) = BH [θ(t)] (4)

where BH(t) is a fractional Brownian motion (fBm) and θ(t) is a time deformation process called trading time. The
multifractality of MMAR process stems from the time deformation of θ(t), which turns a time sequence into a multifractal
series, inside of self-similar process, BH(t). Both θ(t) and BH(t) are independent of each other and θ(t) is expressed as a
multifractal measure.

The multifractal measure, θk(t), defined on t ∈ [0, 1] is constructed through k-step multiplicative cascade.

θk(t) = θk[0, t] =

N
i=1

θk[it, it + 1t] (5)

θk[t, t + 1t] = Mη1Mη1η2 · · ·Mη1···ηk (6)

where 1t = b−k, N = bk, ηi ∈ {0, 1, . . . , b − 1}, and M is a positive, independent, and identical random variable whose
value belongs to S = {m0,m1, . . . ,mb−1}. As k goes to infinity, θk(t) converges to θ(t) in Eq. (4).
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