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h i g h l i g h t s

• A simple solvable energy model landscape is presented.
• This model captures a glass transition or crystallization.
• The minimal cooling rate to obtain a glass is related to the thermal history.
• The glass transition temperature has a logarithmic dependence on cooling rate.
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a b s t r a c t

Theminimal cooling speed required to form a glass is obtained for a simple solvable energy
landscapemodel. The model, made from a two-level systemmodified to include the topol-
ogy of the energy landscape, is able to capture either a glass transition or a crystallization
depending on the cooling rate. In this setup, the minimal cooling speed to achieve glass
formation is then found to be related with the crystallization relaxation time, energy bar-
rier and with the thermal history. In particular, we obtain that the thermal history encodes
small fluctuations around the equilibrium population which are exponentially amplified
near the glass transition, which mathematically corresponds to the boundary layer of the
master equation. The change in the glass transition temperature is also found as a function
of the cooling rate. Finally, to verify our analytical results, a kinetic Monte Carlo simulation
was implemented.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The importance of glassy materials in our societies is indisputable. It is an essential component of numerous products
that we use on daily basis, most often without noticing it. Even though the glass formation process has been extensively
studied using different approaches, it remains an open and puzzling problem, and this far our best understanding of the
process is barely limited at the phenomenological level [1–12]. The reason behind this situation is that glass formation is
mainly a non-equilibrium process [13].
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From a fundamental and technological point of view, the most important variable for glass formation is the cooling
speed [10,14]. Indeed, the industrial use of metallic glasses has been hampered for a while due to the high cooling speed
required in order to form glasses [15–17]. However, by chemical modification, the cooling process of metallic glasses
has been improved a lot [18], and very recently it was possible to form a monocomponent metallic glass, achieved by
hyperquenching [19]. Regarding the relationship between chemical composition and minimal cooling speed, Phillips [20]
observed that for several chalcogenides, this minimal speed is a function of the rigidity. His initial observation was the
starting point for an extensive investigation on the rigidity of glasses, yet this observation has not been quantitatively
obtained in glass models although it is related with the energy landscape topology when the rigidity is taken into
account [21–24].

As the cooling rate effects on glass formation are poorly understood, one would expect that in any sensible model of
glass transition, the phase transition to the crystal should be included for low cooling rates. However, this point has been
overlooked in several theories of glass formation, even though phase change materials have a paramount importance for
information storage technologies. For example, recently it has been possible to access the full temperature range of the
crystallization process, including the full supercooled liquid regime, for the chalcogenide-based materials used to store
information in rewritable DVDs [25]. On the other hand, the energy landscape has been a useful picture to understand glass
transition [9] but, due to its complicate high dimensional topology, it is difficult to understand how cooling rates are related
with the topological sampling.

Simple models of glass transition have been introduced trying to capture the physical properties of this phenomenon
(see for instance [26,27]). In particular, in a previous paper, a minimal simple solvable model of landscape that can display
either a crystalline phase or a glass transition depending on the cooling rate was presented by one of us [28]. Such model,
a refinement of a two-level system (TLS) model previously studied [29–33], included the most basic ingredients for a glass
formation process: metastable states and the landscape topology [28]. As a result, the model was able to produce either a
true phase transition or a glass transition in the thermodynamic limit [28]. Nonetheless, there were important questions
that were not tackled in our previous publication. In particular, it was not clear how to define a critical cooling speed that
separates the transition either to a glass or to a crystal, and how this critical speed depends upon the physical characteristics
of the system like relaxation times, energy barriers and the thermal history. In this study, we answer these open questions
by obtaining analytical expressions to all these quantities. To verify these analytic calculations, a kinetic Monte Carlo is
performed showing an excellent agreement.

This article is organized as follows: Section 2 is devoted to recall the model and its features, as well as to obtain the
system’s behavior and an analytical expression of the glassy state when a given cooling protocol is applied [28]. In Section 3,
we derive the characteristic relaxation time of our system. In Section 4 we obtain the relation between themetastable state,
the cooling rate, the characteristic relaxation time and the thermal history of our system; herewe also obtain the expression
which relates the glass transition temperature with the energy barrier and the cooling rate. In Section 5 we compare our
results with kinetic Monte Carlo simulation. Finally, in Section 6 we summarize and discuss our findings.

2. Revisiting a solvable energy landscape model: glass transition and crystallization

The model is defined as follows: topologically there are many basins in the energy landscape, each corresponding to a
possible state of the system [28]. However, there are only two energetic levels (see Fig. 1). One of these levels has energy
E0 = 0, while the other has energy E1 = Nϵ1, where N corresponds to the number of particles in the system and ϵ1 gives
the energy scale. Within the model, the crystalline state is the one with zero energy, while there are g1 glassy states with
energy E1. It turns out that g1 = exp(N lnΩ), where Ω is just the complexity of the energy-landscape [9], taken as Ω = 2
for simplicity. Finally, the model assumes that the energy barriers that separates each of the g1 states among them are the
same, while the barriers that separate each of the glassy states from the crystal are also equal and given by V (see Fig. 1).

When the system is in equilibrium at a certain temperature T , the canonical partition function1 reads:

Z (T ,N) = 1 + g1e−E1/T , (1)

and the equilibrium probability p0(T ) of the system having energy E1 is given by the usual ensemble average:

p0(T ) =
g1e−E1/T

1 + g1e−E1/T
. (2)

As shown in Ref. [28], for this equilibrium population the system experiences a phase transition associated with
crystallization when the temperature crosses the critical value Tc = ϵ1/ log(2).

To study the systemout of equilibrium, one observes that due to the simple landscape topology, all transition probabilities
per time between metastable states are the same. The transition probability per time from each metastable state to the
ground state is also equal for all metastable states [28]. In this setup, the probability p(t) of finding the system with energy
E1 at time t obeys the following master equation:

ṗ(t) = −Γ10p (t) + Γ01g1 (1 − p (t)) , (3)

1 From now on Boltzmann’s constant kB = 1.
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