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h i g h l i g h t s

• The electron trapping in a degenerate plasma is reformulated by incorporating the nonextensive entropy prescription.
• The q-deformed Fermi–Dirac distribution function including the quantum as well as the nonextensive statistical effects is used.
• A new generalized electron density is obtained.
• The modifications arising in the propagation of ion-acoustic solitary waves are analyzed.
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a b s t r a c t

The electron trapping in a weakly nondegenerate plasma is reformulated and re-
examined by incorporating the nonextensive entropy prescription. Using the q-deformed
Fermi–Dirac distribution function including the quantum as well as the nonextensive
statistical effects, we derive a new generalized electron density with a new contribution
proportional to the electron temperature T , which may dominate the usual thermal cor-
rection (∼T 2) at very low temperatures. To make the physics behind the effect of this new
contribution more transparent, we analyze the modifications arising in the propagation of
ion-acoustic solitary waves. Interestingly, we find that due to the nonextensive correction,
our plasmamodel allows the possibility of existence of quantum ion-acoustic solitons with
velocity higher than the Fermi ion-sound velocity. Moreover, as the nonextensive param-
eter q increases, the critical temperature Tc beyond which coexistence of compressive and
rarefactive solitons sets in, is shifted towards higher values.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Quantum plasmas [1,2] have recently gained growing interest driven mainly by the space observations (neutron stars,
white dwarfs etc.) [3–5] and recent laboratory experiments (ultrafast thermalization of laser plasmas [6], free electron
laser excited plasmas [7], inertial confinement fusion experiments [8] etc.). On the other hand, quantum plasmas are
presently of increasing interest connected mainly with their potential applications in modern technology [9,10] (metallic
and semiconductor nanostructures such as metallic nanoparticles, metal clusters, thin metal films, spintronics, nanotubes,
quantum wells and quantum dots etc.). The ongoing miniaturization of semiconductor devices and nanoscale objects has
made it possible to envisage practical applications of quantum plasmas. The great degree of miniaturization of today’s
electronic components is such that the de Broglie wavelength of electrons λB is comparable with the average interelectron
distance r0 and λB ≪ λL, where λL is the Landau length [11], i.e., the distance over which the characteristic kinetic energy
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kBT (where kB ant T stand, respectively, for the Boltzmann constant and temperature) of thermalmotion equals the potential
energy of interaction between charges. There has been a renewed interest in quantum plasmas, covering different plasma
modes, instabilities, and other nonlinear effects [12–22]. More recently [22], we proposed to re-examine the quantum ion-
acoustic (QIA) waves, by adding the effect of another quantum contribution: the exchange–correlation potential for the
electrons [23]. This effect, resulting from the total antisymmetry of the electron wavefunction, is generally not negligible
when the quantum effects start playing a role. It has been shown that the exchange–correlation effect may drastically
influence the main quantities (phase velocity, amplitude and width), and existence conditions of the QIA solitary waves.
Note that this effect attracted a good deal of interest because of the insight it may lend into the formation and dynamics of
nonlinear structures [24–26]. Different quantum transport models have been developed [19]. The quantum hydrodynamic
(QHD) model consists of a closed set of equations describing the transport of charge, momentum and energy in a charged
particle system interacting through a self-consistent electrostatic potential. This model is considered as an extrapolation
of the classical fluid model, with a new contribution arising from the so-called Bohm potential due to the quantum effects.
Note that the QHDmodel equations can be obtained from the self-consistent Hartree equations [10] or from the phase-space
Wigner–Poisson equations [27]. The QHDmodel has somewell-known limitations [28], and it has been shown that it is valid
only in the case of weak coupling [29].

Particle trapping [30–35] is a nonlinear effect, common in space plasmas as well as in laboratory and numerical
experiments. Some of the plasma particles are confined (trapped) by the wave to a finite region of the phase space where
they bounce forth and back. The first analytical method to construct equilibrium electrostatic structures involving particle
trappingwas given byBernstein, Greene andKruskal (BGK) [36]. Later on, Gurevich [37] considered trapping as amicroscopic
phenomenon. To overcome the difficulties of the BGK method, Schamel [38] developed a different method of constructing
equilibrium solutions, called pseudopotential method. The original work of Schamel and subsequent papers allowed then
a breakthrough in the theory of holes or phase space vortices. Recently, Shah et al. [39] investigated the effect of trapping
on the formation of solitary structures in a degenerate quantum plasma. They used the Fermi–Dirac distribution function
for the electrons with arbitrary degeneracy and obtained an expression for the trapped electrons density in a potential well.
Note that relatively little work has been done on trapping as microscopic phenomena in quantum plasmas [39,14,40].

In an earlier paper [41], the Fermi statistical model has been reformulated by incorporating the nonextensive entropy
prescription [42]. Note that over the last few years, there has been a renewed interest in nonextensive plasmas, covering
different plasma modes, instabilities, and other collective phenomena effects (see Refs. [43–46] and references therein
for an actual view of the theory and its breadth of use). This interest has been mainly motivated by the fact that
during the last two decades, it has been proven that systems endowed with long-range interactions, long-time memory,
fractality of the corresponding space–time/phase-space, or intrinsic inhomogeneity are untractable within the conventional
Boltzmann–Gibbs (BG) statistics. To overcome this shortcoming, Tsallis [42], in a celebrated and influential paper, proposed
a nonextensive generalization of the BG entropy. This generalization was first recognized by Renyi [47] and subsequently
proposed by Tsallis, suitably extending the standard additivity of the entropies to the nonlinear, nonextensive case where
one particular parameter, the entropic index q, characterizes the degree of nonextensivity of the system under hand (for
q → 1, the standard BG statistics is recovered).

To the best of our knowledge, the combined quantumand nonextensive statistical effects on particle trapping in quantum
plasmas have never been considered in the literature. It is therefore amatter of some interest to reformulate and re-examine
the electron trapping in a quantum plasma by incorporating the nonextensive entropy prescription. Making use of the
generalized Fermi distribution and following Landau and Lifshitz [48], we first derive a new generalized electron density,
and than analyze the modifications arising in the propagation of ion-acoustic solitary waves.

2. Theoretical model

a-Generalized electron density
We begin by deriving an expression of the generalized number density for degenerate electrons adiabatically trapped in

a potential φ (r, t). Nonextensive statistical mechanics leads to a q-deformed Fermi–Dirac distribution function. The latter
can be obtained by a maximization of the q-entropy subject to constraints, namely that the number of particles is constant
and that the total energy is constant. This nonextensive generalized Fermi–Dirac distribution including the quantum as well
as the nonextensive statistical effects is given by [41]

f (q)(E) =


1

1 + {1 + (q − 1) [(ε − eφ − µ)/T ]}q/q−1 if 1 + (q − 1) [(ε − eφ − µ)/T ] > 0

1 otherwise
(1)

where ε = p2/2me, p is the electron momentum, me is the electron mass, e is the electronic charge, T is the electronic
temperature given in energy unit, φ is the electrostatic potential, µ is the chemical potential, and q ≥ 1 stands for the
nonextensive parameter. Note that for q → 1, (1) reduces to the well-known Fermi–Dirac distribution function. In the zero-
temperature limit, it reduces to the Heaviside step function corresponding to an ideal degenerate Fermi gas, regardless the
value of the entropic index q. Following Landau and Lifshitz [48], the electron energy in the presence of a potential field φ is
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