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h i g h l i g h t s

• The confinement of equally charged particles in the Sd−1-sphere is analyzed.
• The generalization of the so-called Thomson problem is performed.
• Compact structures appear in higher dimensions. d → ∞ is addressed.
• New discrete systems are also studied: circumscribed and inscribed polygons.
• Non-Euclidean geometries are also considered.
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a b s t r a c t

Systems of identical particles with equal charge are studied under a special type of
confinement. These classical particles are free to move inside some convex region S and on
the boundary of it Ω (the Sd−1

−sphere, in our case). We shall show how particles arrange
themselves under the sole action of the Coulomb repulsion inmany dimensions in the usual
Euclidean space, therefore generalizing the so called Thomson problem tomany dimensions.
Also, we explore how the problem varies when non-Euclidean geometries are considered.
We shall see that optimal configurations in all cases possess a high degree of symmetry,
regardless of the concomitant dimension or geometry.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The seminal work of Wigner’s predicting the crystallization of electrons [1] has had a continuation in recent years in
different branches of science. At the beginning the attention was focused in solid state physics, regarding electron crystals,
in the same vein as Wigner’s original work. However, the concomitant de facto realization of the experimental setting has
proved to be very challenging, like – among others – the creation of aWigner crystal on the surface of superfluid Helium [2]
or the achievement of Wigner crystals in GaAs/GaAlAs quantum wells [3]. Very recently a 1D Wigner crystal was produced
in carbon nanotubes [4].

∗ Corresponding author.
E-mail addresses: jbv276@uib.es (J. Batle), bagdasari@yahoo.com (A. Bagdasaryan), abdelatyquantum@gmail.com (M. Abdel-Aty),

smabdullah@kau.edu.sa (S. Abdalla).

http://dx.doi.org/10.1016/j.physa.2016.01.069
0378-4371/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.physa.2016.01.069
http://www.elsevier.com/locate/physa
http://www.elsevier.com/locate/physa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physa.2016.01.069&domain=pdf
mailto:jbv276@uib.es
mailto:bagdasari@yahoo.com
mailto:abdelatyquantum@gmail.com
mailto:smabdullah@kau.edu.sa
http://dx.doi.org/10.1016/j.physa.2016.01.069


238 J. Batle et al. / Physica A 451 (2016) 237–250

Posterior research on the original Wigner problem triggered a diverse literature on both experimental and theoretical
work regarding properties of ionic Coulomb crystals, and that is where we encounter the classical Thomson problem [5].
The original goal of the Thomson problem is the following: given N charges confined to the surface of a sphere, what is the
arrangement of chargeswhichminimizes the total electrostatic energy? In essence, the Thomson problem is concernedwith
finding the minimal energy ground state of a cluster of charges in an arbitrary geometries and nature of confinements, not
only on the S2-sphere.

Also, the Thomson problem is widely regarded as one of the most important unsolved packing problem in mathematics.
On the one hand, it plays a central role in the field of strongly correlated Coulomb systems such as dusty plasmas, quantum
dots and colloidal crystals. On the other hand, the Thomson problem yields geometrical and topological insights in ordered
systems.

Specifically, systems with planar geometry have been studied previously [6–9]. The Thomson problem has been
extensively studied also from very different perspectives in the literature [10–13].

Since the original case was initially intended for the S1 (2D) and S2 (3D) spheres in the usual Euclidean space, it is the
aim of the present work to generalize the problem to those systems which live in

• higher dimensional Sd−1-spheres, d being the dimension of the concomitant Euclidean space,
• and systems where the metric space is changed so that it is no longer Euclidean (Elliptic Ed or Hyperbolic Hd).

Recent remarkable work deal with methodology of random points on the sphere [14] as well as the study on entanglement
in the (d − 1−)spherium [15].

The study of non-Euclidean geometries and the Thomson problem bears great significance as far as geometry and physics
are concerned. The way optimal energies EN , as we shall see, behave differently for distances are measured using distinct
metrics. As expected, minimal configurations and regular bodies will be intimately related. There is a physical reason for
that since regular bodies are such that the sum of their respective vector positions


i ri is zero, which implies that there is

no net dipole moment.
Let us briefly discuss the numerical methods for obtaining the exact energies and configurations for any confinement

throughout this work. When working in the definite plane or space according to some metric, we will have k degrees of
freedom per charged particle. Thus, the total number of variables will be kN . A minimization will take place for the whole
set of parameters in every given configuration of the particles, finding the optimal Coulombian energy E∗

N .
The Thomson problem is certainly the kind of example of an NP hard problem and so progress in this area has only been

possible thanks to the use of computational techniques. In our case, we have performed a two-fold search employing (i) an
amoeba optimization procedure, where the optimal value is obtained at the risk of falling into a local minimum and (ii) the
so called simulated annealing [16] well-known search method, a Monte Carlo method, inspired by the cooling processes
of molten metals. The advantage of this duplicity of computations is that we can be quite confident about the final result
reached. Indeed, the second recipe contains a mechanism that allows a local search that eventually can escape from local
optima.

The purpose of this paper is to provide a semi-analytical approach to describe the ground state properties of charged
particles in different geometries. Specially in the case of the Sd−1-sphere, we shall consider the minimal energies and
concomitant configurations or arrangements of charged particles in different dimensions and, eventually, reach the limit
for d → ∞. We consider particles interacting by means of the Coulomb interaction at zero temperature. Finally, some
conclusions are drawn in the last section.

2. The Thomson problem in arbitrary dimensions

2.1. One dimension

As explained previously, the only interaction between particles is electrostatic in nature. This implies that all particles
interact with each other until an energetic equilibrium is reached, which is the one we are interested in. Suppose that we
want to study the system composed by charged particles along a line segment between [−R0, R0] (the radius R0 will be 1
from now on). Due to symmetry reasons, the system is symmetric with respect to the center. For N even, no particle lies
at the origin, whereas for N odd there is always one charge. Even though the physical system is quite simple, the optimal
configuration of the charges for a minimum energy EN is not analytical.

However, we can obtain an excellent upper bound by considering that, for large N , particles more or less arrange
themselves in equally spaceddivisions of the line segment containing them. Thus, defining the linear charge densityλ =

L
N−1

(L = 2 in our case), we have

EN ≈


i<j

1
ϵ

1
(j − i)λ

=
N − 1
2ϵr


i<j

1
j − i

(1)

where ϵr = ϵ/ϵ0 is the relative dielectric constant of the medium. We shall use units so that e2/4πϵ0 = 1 from now on.
The sum is performed between distinct pairs, so that it is equal to 1 + (H(N − 1) − 1)N , where H(N − 1) is the sum of the
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