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h i g h l i g h t s

• Explosive percolation can be observed in real networks formed by thresholding.
• Explosive percolation is possible when edges are added in a particular order.
• The proposed method does not involve a random process.
• Examples of explosive percolation with real network data are shown.
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a b s t r a c t

Explosive percolation in a network is a phase transition where a large portion of nodes
becomes connected with an addition of a small number of edges. Although extensively
studied in randomnetworkmodels and reconstructed real networks, explosive percolation
has not been observed in a more realistic scenario where a network is generated by
thresholding a similarity matrix describing between-node associations. In this report,
I examine construction schemes of such thresholded networks, and demonstrate that
explosive percolation can be observed by introducing edges in a particular order.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Percolation is a phase transition phenomenonwhere a unique large connected cluster emerges in a lattice or a network, as
connections are gradually introduced. A well-known example of percolation in networks is the Erdős–Rényi (ER) model [1],
in which n isolated nodes are randomly connected by m edges. Here, the relationship between the number of edges and
nodes can be described by the fraction t defined as t = m/n, orm = tn. When t < 1/2 (orm < n/2), the size of the largest
connected component (known as the giant component) Smax is small. However, at t = 1/2, a unique giant component
emerges covering a large portion of the network. As t increases further (t > 1/2), the giant component grows until it
encompasses all the available nodes. A number of recent papers examine how such percolation can be predicted in various
types of networks [2–5]. The number of steps required for such percolation can be shortened by simple schemes, giving an
appearance of an abrupt phase transition known as explosive percolation [6]. A number ofmethods,modified versions of the
ER model, have been reported to produce explosive percolation [7,8]. Explosive percolation can be observed not only on ER
networks, but also in other types of random network models [9,10]. A recent review on explosive percolation can be found
in Ref. [11]. Explosive percolation schemes involve adding edges randomly in a manner that prevents formation of large
clusters. Such process can delay percolation [6] while setting up a collection of connected components, known as the powder
keg [7,8], capable of producing explosive percolation. However, such schemes also introduce randomness since edges are
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added in a random fashion. Consequently such schemes are only relevant to random network models, as the same network
cannot be reproduced again. Existing real networks can be reconstructed to exhibit explosive percolation by applying such a
scheme [12,13]. However, it is not clear if explosive percolation can be observed during the construction of a real network
without introducing a stochastic process commonly seen in the existing explosive percolation schemes. In this report, I
present a simple algorithm to construct a network during which explosive percolation is observed. In particular, I focus
on a class of networks that can be constructed by thresholding a similarity matrix describing the strength of associations
between nodes (e.g., a correlation matrix).

2. Methods and materials

2.1. Thresholded networks

In a similarity matrix, each row or column represents a node in the network, and the ij-th element quantifies the
association between nodes i and j (see Fig. 1(a)). If the ij-th element exceeds a certain threshold, then nodes i and j
are considered connected by an edge. The resulting network is often an undirected network. Networks constructed by
thresholding a similarity matrix, or thresholded networks, are often products of hard thresholding, in which the same
threshold value is applied for the entire matrix. However, hard thresholding often leads to concentration of edges in
some parts of networks while a large portion of nodes may be disconnected from the rest of the network [14,15]. One
way to overcome this problem is to threshold each row of the similarity matrix separately, controlling the number of
edges originating from the corresponding node [14,15]. Another way to overcome the problem is to only retain edges with
statistically significant weights at each node [16,17]. These methods are known to preserve the backbone of the underlying
complex network [14,16,17]. In this report, I adopt the thresholding method proposed by Ruan et al. [15], referred as rank-
based thresholding, in which the top d highest values are identified in each row of a similarity matrix and the corresponding
edges are added to the network. Even with a small value of d (≃ 3), the resulting network is likely to be connected [15].

AlthoughRuan et al.’smethod can produce a connected networkwith a relatively small number of edges [15], they did not
examine how a network evolves as edges are added to isolated nodes one at a time, in a similar manner as the construction
of a random network model. Since rank-based thresholding can produce a connected graph, percolation may be observed
as edges are added one-by-one, depending on the order edges are added. Moreover, such percolation may be explosive if an
appropriate scheme is chosen to add edges. To this end, I examined two approaches of constructing a thresholded network.
In both approaches, the largest elements (largest, 2nd largest, 3rd largest, . . . , up to dth largest) were identified in each row
of the similarity matrix (Fig. 1(b)). Each of these elements represented an edge (i, j), where i and j were row and column
indices, respectively (Fig. 1(b)). Then these largest elements were sorted within each rank, then concatenated as shown in
Fig. 1(c). The elements can be sorted in ascending order within each rank; I shall refer this as the ascending approach. Or,
the elements can be sorted in descending order within each rank, referred as the descending approach. The sorted edges
were added to the network, one-by-one, in the order in the concatenated vector (see Fig. 1(c)). It should be noted that, in
both approaches, the same edge may be selected twice (e.g., edges (1, 10) and (10, 1) in Fig. 1(c)). If that occurred, then
only the first edge was added to the network while the second edge was discarded. In a network generated by rank-based
thresholding, node degrees were not d for all the nodes. Even if an edge (i, j) is attributed to one of the top d values for node
i, it may not be part of the top d values for node j. This results in node degree of j greater than d.

2.2. Network data

Four examples of thresholded networks were examined, namely, a stock market network, an airline passenger traffic
network, a gene co-expression network, and brain functional connectivity networks.

2.2.1. Stock market network
The stock price data of 491 companies listed in Standard & Poor’s 500 index (S&P500) were downloaded using the

get.hist.quote function in the tseries package of R. In particular, the adjusted closing prices between January 1, 2000 and
December 31, 2013 were downloaded for these companies. The downloaded time series data were then converted to the
one-period fractional return r(t) = (p(t) − p(t − 1))/p(t − 1) where p(t) is the stock price at the time point t . Then the
correlation coefficients between r(t)’s from different companies were calculated to generate a correlation matrix. Only the
time pointswhere both companies had the price datawere used in the calculation in the correlation coefficients; the number
of time points varied between 47 and 3467. The calculation resulted in a 491 × 491 correlation matrix.

2.2.2. Airline passenger traffic network
The US domestic airline passenger traffic data for year 2013 were downloaded from the Bureau of Transportation

Statistics from the United States Department of Transportation.1 The data listed the number of passengers from one airport
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