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a b s t r a c t

Using the effective field theory with a probability distribution technique that accounts for
the self-spin correlation functions, the magnetic properties of disordered Fe–Al alloys on
the basis of a site-diluted quantum Heisenberg spin model are examined. We calculated
the critical temperature and the hysteresis loops for this system. We find a number of
characteristic phenomena. In particular, the effect of concentration c of magnetic atoms
and the reduced exchange anisotropic parameter η on both the critical temperature and
magnetization profiles are clarified.
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1. Introduction

Magnetic systems have always been of great practical interest, mainly due to their possible usage in information
technology, as well as novel materials for a variety of applications. In the former case, the giant magnetoresistance is a
special example for technological information storage [1,2]. Thesematerials have also been the subject of intense theoretical
investigation in both, pure and disordered versions [3]. Among the family of magnetic alloys, the Fe–Al system has been one
of the most interesting because of the several magnetic phases that can be present in this system, such as ferromagnetism,
paramagnetism, and even the spin-glass phase [4,5]. The region of the magnetic phase diagram in which these phases exist
are strongly dependent upon how the constituent atoms are distributed in the crystalline lattice. The Fe1−qAlq system in
the bcc structure shows an interesting magnetic behavior since its critical temperature decreases with q = 1 − c but
shows a kind of plateau for low Al concentrations. Theoretical studies [5,6], using mean field renormalization group [7]
and Bogoliubov inequality [8] approaches have been used to explain this behavior by taking a simple Ising Hamiltonian.
Sato and Arrot [9] obtained the magnetization by assuming a ferromagnetic exchange between nearest-neighbor Fe atoms
and an antiferromagnetic superexchange between two Fe atoms separated by an Al atom. This model, however, predicts
an antiferromagnetic phase at low temperatures which was not revealed by neutron scattering experiments [10]. Shukla
and Wortis [11] and Grest [12] did their estimates assuming a spin-glass state near the critical Al concentration. In this
case, a rather good agreement with experimental data has been achieved. More recently, an experimental study of Fe–Al
alloys in the disordered phase has been reported for Al concentrations q = 1 − c with c is the concentration of Fe
atoms, in the range 0 ≤ q ≤ 0.5 [13]. It has been shown that this system, at room temperature, undergoes a ferro-
to paramagnetic phase transition at a critical Al concentration qc = 0.475 [13]. It has also been noted that the critical
temperature of the ferro- to paramagnetic transition decreases as the Al concentration increases. Moreover, these alloys
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are all ferromagnetic and do not show the anomalous behavior of the ordered ones. Moreno and Montenegro [14] reported
an investigation of the ferromagnetic disordered Fe1−qAlq alloys by magnetization measurements. For a special value of
concentration q, they obtained the critical temperature and critical exponents for different alloys. Our aim in this paper
is to extend the results reported in Ref. [15] for studying the phase transition and the site-diluted quantum Heisenberg
spin model applied to the magnetic properties of Fe–Al disordered alloys, in the framework of the effective field theory
with a probability distribution technique [16]. The model studied is the same as that analyzed in Ref. [15]. In particular, an
anisotropic Heisenberg model with site dilution is investigated in mean-field approximation. To simplify the consideration
further a two-site cluster approximation is already usedwhich is based on a two-site cluster theory introduced by Bobak and
Jascur [17] inwhich attention is focused on a cluster comprising just two selectedHeisenberg spins. Themagnetic properties
such as the hysteresis loops and coercive field as functions of the temperature and concentration respectively are discussed.
We discuss on simple cubic symmetric with nearest-neighbor exchange interactions in which the strength is assumed to be
different from the bulk value in the surface. In Section 2, we outline the formalism and derive the equations that determine
the phase diagrams, the hysteresis loops and critical temperature. The phase diagram of the system as functions of the
parameters R, η and c are discussed in Section 3. The conclusion is given in Section 4.

2. Formalism

In order to obtain the critical properties of the Fe–Al disordered alloys we assume a quenched site-diluted quantum
Heisenberg model with only the nearest-neighbor interactions. The model is defined on a simple cubic lattice and the
Hamiltonian of the system is given by

H = −
∑
〈ij〉

Jijcicj(ξSi,xSj,x + ηSi,ySj,y + ζ Si,zSj,z) (1)

where ci is a random variable which takes the value 1 or 0 according to whether the site i is occupied by a spin Si, or not.
Jij is the exchange parameter between spins. The parameters ξ, η and ζ control the anisotropy of the exchange interaction
Jij. For some special values of ξ, η and ζ one recovers the well-known models, namely, the Ising model [I] (ξ = η = 0), the
isotropic Heisenberg model [H] (ξ = η = ζ ) and the X–Y model [XY] (ξ = η, ζ = 0).
In this paperwe report results for the two-site cluster approximation. The following notationwill be adopted throughout.

The two nearest-neighboring sites forming the pair cluster are denoted by 1 and 2. λi (i = 1 to N1) denote the nearest-
neighboring sites of 1 (excluding 2), while αi (i = 1 to N2) those of 2 (excluding 1). Some lattices have sites common to
both the sets {λi} and {αi}. These are denoted by ϕi(i = 1 to N).

{
λ′i
}
and

{
α′i
}
denote the sets {λi} and {αi} when the sets

{ϕi} have been removed. Si,z , Si,x and Si,y denote the Pauli matrices which are the components of the quantum spin
−→
Si of

magnitude S = 1/2 at site i, and the summation runs over all pairs of nearest neighbors.
The starting point for the two-site cluster approximation is to split the Hamiltonian into the following terms

H = H12 + H1 + H2 + H ′ = H0 + H ′ (2)

with

H12 = −c1c2J
(
ξS1,xS2,x + ηS1,yS2,y + ζ S1,zS2,z

)
(3)

and H1(H2) is the Hamiltonian type, namely

H1 = −Jc1

(
ξS1,x

N1∑
i=1

cλiSλi,x + ηS1,y
N1∑
i=1

cλiSλi,y + ζ S1,z
N1∑
i=1

cλiSλi,z

)
(4)

H2 = −Jc2

(
ξS2,x

N2∑
i=1

cαiSαi,x + ηS2,y
N2∑
i=1

cαiSαi,y + ζ S2,z
N2∑
i=1

cαiSαi,z

)
. (5)

Allowing for the fact that H0 and H ′ do not commute, the thermal average of S1,z , for example, can be written as

〈Sz〉 =
〈
B
A

〉
−

〈(
B
A
− S1,z

)
∆

〉
, (6)

where

A = Tr0 exp(−βH0), B = Tr0[S1,z exp(−βH0)], (7)

∆ = 1− exp(−βH0) exp(−βH ′) exp(βH0). (8)

In the above, Tr0means the partial tracewith respect to the states of the cluster spins S1 and S2. Eq. (6) is an exact relation,
but is difficult to the presence of the second thermal on the right-hand side. Following Ref. [18], we avoid this difficulty by
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