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a b s t r a c t

Amodel for diffusion andphase separationwhich takes into account exponential relaxation
of the solute diffusion flux and its fluctuations is developed. The model describes a system
undergoing phase separation governed by a partial differential equation of hyperbolic type.
The analysis is done for the evolution of patterns in spinodal decomposition for the system
supercooled below critical temperature. Analytical results show that relaxation processes
of the solute diffusion flux lead to the selection of patterns with different wavenumbers.
Considering spatial–temporal correlations of the flux fluctuations, we have found that the
temporal correlations promote selecting large-period patterns, whereas the corresponding
spatial correlations accelerate such processes.

© 2010 Published by Elsevier B.V.

1. Introduction

A process of phase separation evolving through spontaneous growth of fluctuations of concentration (as in liquid–liquid
systems) or fluctuations of density (as in gas–liquid systems) is known as spinodal decomposition. It results in the separation
of phases having equivalent symmetry and differing only in composition (density).
From thepioneeringworks of Cahn andHilliard [1,2] andCook [3], substantial progress has beenmade in the investigation

of differentmaterials undergoing phase separation by the spinodalmechanism [4–9]. As follows from experimental findings
and the theoretical description of various functions characterizing spinodal decomposition [4–9], the amplification rate
ω(k, t) and structure factor S(k, t) as functions of the wavevector k and time t are used to characterize the growth of
fluctuations and developing patterns. In spinodal decomposition, the amplification rateω(k, t) is the exponent of the faster
growing mode and the structure factor S(k, t) is analyzed as an equal time concentration (density) correlation function
which at equilibrium does not depend on time (for an overview of various other definitions, see [10]).
In its linear version, the Cahn–Hilliard–Cook (CHC) model [1–3] predicts (i) smooth behavior of S(k, t) with one

characteristic peak in time t , and (ii) linear behavior for ω(k, t)/k2 versus k2. However, predictions (i)–(ii) contradict many
experimental findings in which, particularly for ω(k, t)/k2 versus k2, a nonlinear behavior is clearly observed [4,5,7,8].
To describe the nonlinearity in the amplification rate ω(k, t) of spinodal decomposition, several models have been

developed in addition to the CHC model. One of them – the Langer–Baron–Miller model (LBM model) [11] – has been
widely tested against experimental data. The LBM model predicts the behavior of functions ω(k, t)/k2 and S(k, t) in
reasonable agreement with experiment [8,12–14]; however, it is limited by the hydrodynamic approximation in which
a local equilibrium exists at every moment of transformation. This approximation limits the description of very early stages
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of phase separation in spinodal decomposition andmight fail in its description of evolving patterns in non-ergodic systems,
e.g., in glasses [15].
Using extended irreversible thermodynamics [16], a model for fast spinodal decomposition has also been advanced for

the case of local non-equilibrium solute diffusion [17,18]. In thismodel, the introduction of a kinetic contribution responsible
for the purely non-equilibrium part of the entropy (or free energy) leads to a nonlinearity in the amplification rate for
decomposition and to agreement with experimental data, at least for a spinodally decomposed binary glass [18]. The kinetic
contribution changes a model based on a parabolic partial differential equation [1,3,11] to a model with memory [19].
As a result, the model is able to describe both the fast decomposition existing at the early stages and the slow spinodal
decomposition occurring at the following and final stages. It can predict the process of rapidly quenched decomposition for
short periods of time, large composition gradients or deep undercoolings into the spinodal region of the phase diagram. Thus,
the model describes the earliest stages when the standard hydrodynamic approximation fails and gradually converges with
the Cahn–Hilliard model at later stages of decomposition. In particular, the memory function for the diffusion flux in a form
of exponential decay leads to a ‘‘hyperbolic model’’ described by a partial differential equation of the hyperbolic type [19].
In the present article, we concentrate on the stochastic generalization of the hyperbolic model for fast spinodal

decomposition. As has been shown [18], the nonlinearity in the amplification rate ω(k, t)/k2 is governed by atomic
diffusion and interaction between decomposing phases. Also, computational modeling demonstrates that nonlinearity may
be observed in the behavior of the structure factor [20]: a wave behavior for S(k, t) occurs at small t and large k at the
initial stages of decomposition. These features are observed in a pure deterministic hyperbolic model and a possible noise
contribution into the mechanism of fast spinodal decomposition has not yet been analyzed. Therefore, the role of stochastic
processes in the form of white and colored noise is clarified in the present article.
The article is organized as follows. In Section 2, a model of fast spinodal decomposition proceeding under local non-

equilibrium and with space–time-correlated noise in the atomic diffusion field is formulated. Section 3 deals with the
derivation of the structure factor S(k, t) as one of the main functions responsible for pattern evolution in spinodal
decomposition. Limiting cases are presented from the general expression on evolution of S(k, t). In particular, the limit
of the white noise and limits of the colored noise separately in space and in time are found. Further, the analysis of the
dynamics of S(k, t) is presented in Section 4. It is given for initial stages when the local non-equilibrium in the diffusion
field (deterministic contribution) and the noise (stochastic contribution) may both have an essential influence on the rate of
spinodal decomposition.We discuss the role of a fluctuating source on the systemdynamics in Section 5. Finally, in Section 6,
a brief summary of the results is presented.

2. The model

Let us consider an isothermal binary system AcB1−c which begins to spinodally decompose at the critical concentration
c. The considered system is a binary alloy or mixture of chemical components in liquid or solid states free of imperfections,
without the effect of coherency strain, shear flow ormagnetic effects. Even though these effects contribute to the free energy
density of the system and influence phase separation qualitatively and quantitatively [6,9,21,22], we exclude them from the
statement of the present problem to simplify the analysis. As a result, the following main contributions to the free energy
are taken into account:
– free energy density distinguishing between the separating phases;
– concentration gradient contribution due to surface energy between phases;
– local non-equilibrium effect in the form of atomic flux relaxation to its steady state;
– stochastic effects appearing from the presence of noise.

To describe the system behavior under the above contributions, let us also introduce the conserved order parameter in
the form of the local concentration difference x = c − c described by the continuity equation

∂x
∂t
= −∇ · J, (1)

where J is the diffusion flux which, generally, depends on the time t [16]. When there is a large driving force
for phase separation (which usually occurs at initial stages of transformation, for short periods of time, high local
concentration gradients, or deep supercooling into a spinodal region of phase diagram), the system undergoes fast spinodal
decomposition [17–19]. It proceeds with the time evolution of atomic diffusion flux, which, in the presence of stochastic
effects, is described by

τD
∂J
∂t
= −J−M∇

δF [x]
δx
+
√
Mζ (r, t). (2)

Here, τD is the relaxation time for the atomic flux J to reach its steady state,M is the atomicmobility, andF is the free energy
functional of the binary system. The quantity ζ is a Gaussian source to represent flux fluctuationswhich obeys the fluctuation
dissipation relation. It is consistently introduced into the equation for flux for both cases [23]: the noise ζ corresponds to
values relaxing in time scales shorter than or longer than τD. The statistical properties of ζ are given by

〈ζ (r, t)〉 = 0, 〈ζ (r, t)ζ (r′, t ′)〉 = 2σ 2C(r− r′; t − t ′), (3)
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