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h i g h l i g h t s

• The determination of a spectral measure is a standard inverse problem with convex constraints.
• The convex constraints come in from the experimental measurement errors.
• The method of maximum entropy in the mean handles this class of problems in a natural way.
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a b s t r a c t

In this paperwe consider an inverse problemappearing in rheology, consisting of determin-
ing a spectral measure over the set of relaxation times, that yields an observed collection of
loss and storagemoduli. Mathematically speaking, the problem consists of solving a system
of Fredholm equations. To solve it, we propose an extended version of the maximum en-
tropy method in the mean which is flexible enough to incorporate potential measurement
errors.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction and preliminaries

To describe the tensile strength of synthetic fibers, or to be more precise, of polymer melts, some standard experimental
tests are carried on. The rheologicalmeasurements include linear viscoelastic shear oscillations, aswell as linear elongations.
The idea behind the measurements is to determine the relationship between the force (stress) and strain (deformation) in
the material. When a material is deformed, part of the work exerted is stored as in the deformation, and part is spent as
heat. These are known as storage modulus and storage loss respectively.

In his thesis, Berger [1], and in a report based on it, Berger and Meissner [2], described the results of the experiments.
Different viscoelastic mixtures are subjected to torsional oscillations, and the storage and loss moduli are measured at
different frequencies ω and different temperatures. We will follow their notation to denote as G′(ω) and G′′(ω), the storage
and the loss modulus respectively.

Their interest consists of determining the discrete relaxation spectrum {(gn, τn)|n ≥ 1} such that

G′(ω) =


n

gn
ω2τ 2

n

1 + ω2τ 2
n

(1)
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as well as

G′′(ω) =


n

gn
ωτn

1 + ω2τ 2
n
. (2)

They select the relaxation times arbitrarily within the range τmax = 1/ωmin and τmin = 1/ωmax, and then determine the
(discrete) spectral measure gn by a mean square error minimization procedure for each of the proportions of the polymer
mixture.

Berger [1] states these equations as a discrete version of the set

G′(ω) =


H(ln τ)

ω2τ 2

1 + ω2τ 2
d ln τ (3)

and correspondingly

G′′(ω) =


H(ln τ)

ωτ

1 + ω2τ 2
d ln τ (4)

and he sets H(ln τ) = g(τ )τ and d ln τ = dτ from which the discretization is apparent.
More recently,Wolpert, Ickstad andHansen [3] andWolpert and Ickstad [4] considered the original problem, inwhich the

relaxation time τ is allowed to vary continuously in the interval [τmin, τmax] and, instead of looking for a discrete spectrum,
they propose determining a spectral measure (that is, a positive measurable function) h(τ ) defined on [τmin, τmax], such that

G′(ω) =


h(τ )

ω2τ

1 + ω2τ 2
dτ (5)

and correspondingly

G′′(ω) =


h(τ )

ω

1 + ω2τ 2
dτ (6)

where the available information are the values of G′(ωk) and G′′(ωk) at a collection and the connection between their h(τ )
and Berger’s H and g is given by H(ln τ) = h(τ ) and g(τ )τ = h(τ ).

In the last two mentioned papers, the authors use a Bayesian methodology to determine g(τ ). Here we propose the use
of the extended method of maximum entropy in the mean (MEM) to deal with a discretized version (5)–(6) augmented
to take into account the measurement errors. To implement such methodology, we transform the problem into a problem
consisting of solving a linear system of equations subject to non-linear, convex constrains, which is then transformed into a
problem consisting of determining a probability distribution on an appropriate space and satisfying some constraints. The
idea behind this procedure can be traced back to Navaza [5]. A more detailed description of the methodology, and further
references, can be seen in Gzyl and Velásquez [6]. The remainder of the paper is organized as follows. In Section 2we consider
the discretized version of (5)–(6) with the inclusion of measurement noise. In Section 3we recall the basics of MEM and how
they relate to this type of problem, and in Section 4we present the results of applying MEM to solve (5)–(6).

2. Discretization and augmentation of (5)–(6)

Before discretizing (5)–(6) we integrate them into one single system of Fredholm equations. For that we consider a
2M-dimensional (column) vector G =


G′(ω1), . . . ,G′(ωM),G′′(ω1), . . . ,G′′(ωM)

t , where as usual we denote by xt the
transpose of the vector x. Here {ω1, ω2, . . . , ωM} is the collection of frequencies at which both G′(ω) and G′′(ω) were
measured.

Even though the output of the discretization process is similar to (1)–(2), the inner logic is different. Here we choose a
uniform partition of [τmin, τmax] into a number N of equal parts and denote the left-hand value of h(τ ) at the left end point
of each interval each by hn. The N parts (subintervals) have end points [τn, τn+1] with τn = τmin +

n−1
N (τmax − τmin), for

n = 1, . . . ,N + 1. There the partition is dictated by the experimental setup.
To obtain the discretized integral kernel, we define a 2M × N-matrix Ki,n, the entries of which are given by

Kk,n =


Kk,n =

1
N

ω2
kτn

1 + ω2
kτ

2
n

1 ≤ k ≤ M, n = 1, . . . ,N.

Kk,n =
1
N

ωk

1 + ω2
kτ

2
n

M + 1 ≤ k ≤ 2M, n = 1, . . . ,N.

The factor 1/N in front of the K ’s comes from the discretization of the integral. We end up having to solve the following
algebraic problem: Find h such that

Kh = G. (7)
In our case we will have N ≫ K , this algebraic problem, besides being ill conditioned has another difficulty built in: The
experimental data is collected with measurement error, and since there are positivity constraints imposed on h, we shall
transform the problem a bit.
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