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h i g h l i g h t s

• Correct estimating of the linear fit parameters in the presence of large outliers.
• The median of the empirical distribution of the residues determines line’s shift.
• The minimum of interquantile width determines line’s slope (1st method).
• The maximum of characteristic function’s residues determines line’s slope (2nd method).
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a b s t r a c t

We consider the problem of linear fitting of noisy data in the case of broad (say α-stable)
distributions of random impacts (‘‘noise’’), which can lack even the first moment. This situ-
ation, common in statistical physics of small systems, in Earth sciences, in network science
or in econophysics, does not allow for application of conventional Gaussian maximum-
likelihood estimators resulting in usual least-squares fits. Such fits lead to large deviations
of fitted parameters from their true values due to the presence of outliers. The approaches
discussed here aim onto the minimization of the width of the distribution of residua. The
correspondingwidth of the distribution can either be defined via the interquantile distance
of the corresponding distributions or via the scale parameter in its characteristic function.
The methods provide the robust regression even in the case of short samples with large
outliers, and are equivalent to the normal least squares fit for the Gaussian noises. Our dis-
cussion is illustrated by numerical examples.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Themethod of least squares linear regression (straight line fitting) has a very long history: it was invented in its simplest
formby C.F. Gauß, but is still one of themostwidespread and powerful approaches in data analysis. Itmay be used as a stand-
alone tool to detect linear trends, or be incorporated into more complex analysis procedures, like Detrended Fluctuation
Analysis proposed in Ref. [1], whose first step requires subtraction of linear trends from subpartitions of data. The standard
variant of the method assumes the linear relation between the dependent variable y and the independent one x, and the
existence of a random impacts on the outcomes of single measurements, represented by the noise ξ , so that

yi = axi + b + ξi, (1)

and is aimed onto extracting information about a and b from such noisy data. The standard method works well if the
data are ‘‘compact’’, i.e. when the corresponding interval on the abscissa is homogeneously sampled and no large ordinate
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outliers are present. The method is essentially a parametric one and can be regarded as the maximum likelihood approach
assuming the Gaussian distribution of independent errors. The challenges of more complicated samples originating from
modern problems of experimental and computational physics and related fields have motivated works aimed to improve
the accuracy of fits to extremely irregular data, i.e. the ones having outliers on the ordinate and on the abscissa (leverage
points), or large errors in locating xi, see Refs. [2,3] for the list of modern modifications. For this reason, a number of works
discuss the criteria for a detection of these outliers with the following their elimination with respect to a prescribed cut-off
level, and the regression of obtained ‘‘cleared’’ samples [4] or a choice of subintervals, where the influence of outliers could
be negligible [5,6]. Another problem arises for the non-independent noises which themselves can show trends [7].

Even in the case of independent errors the problems arise if the noise possess a heavy-tailed distribution, i.e. generates
large outliers. These are quite characteristic for a large variety of process in small nonequilibrium systems, network
dynamics, econophysics, etc. [8]. Since these distributions may lack even the first moment, their processing, if keeping
the principles of the least-square regression untouched, requires very specific methods [9,10] including repeated median
regression, the consideration of a nested hierarchy block subdivisions for the analyzed sample, etc. For such cases non-
parametric regression methods may be superior to the standard one.

In the present work we discuss two such approaches, the quantile regression as pioneered by Koenker and Basset [11],
and the scale parameter regression based on the properties of characteristic functions. The methods are non-parametric
(i.e. do not assume the specific form of the distribution) and robust (i.e. do not rely on the existence of its moments). Our
numerical examples consider linear trend in presence of independent errors distributed according to Lévy stable laws. As a
practical example, we consider geophysical data, namely the eastward component of the geomagnetic field measured on a
moving Antarctic ice shelf, showing a linear trend from the motion and a combination of small and large scale fluctuations.
Here the results of robust scale parameter regression are compared to conventional methods.

2. Linear regression

Before discussing the specific methods, let us shortly review the general idea (or, better, general ideas) of linear
regression. Posing the regression problem starts from the assumption that the values of the dependent variable (observable)
yi linearly depend on xi, but are subject to additive noise ξi, Eq. (1). We are looking for the way of inferring of the parameters
a and b, delivering the best possible estimates â and b̂ for these parameters. In the ideal situation (at least in the asymptotic
setting when the total number of measurement points N gets large, N → ∞) the method should give â = a, b̂ = b. In
praxis, this is usually done by the application of the least squares fit.

There are different ways to think about the least squares method.
First, we can follow the standard line of argumentation pertinent to statistical inference and make a maximal likelihood

estimate for the parameters a and b assuming the distribution of ξi is Gaussian with zero mean and unknown dispersion,
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In this case the probability density of a given realization of ξi is given by the product of such single-point distributions:
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Changing from ξi to yi we get the corresponding density of the experimental outcomes {yi},

p(y1, . . . , yN |a, b) =
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Considering the log-likelihood of a and b provided the data,

L(a, b|{yi}) = ln p({yi}|a, b) = const −

N
i=1

(yi − axi − b)2

2σ 2

and maximizing it with respect to a and b, we get the least square prescription for finding a and b by minimizing the sum of
squared residues

R2
=


i

[yi − (axi + b)]2 = min .
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