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Abstract

We implemented a variational method for approximating the solution of the nonlinear dispersive Kðm; pÞ type equations.
By using this scheme, the explicit exact solution is calculated in the form of a quickly convergent series with easily

computable components. To illustrate the application of this method, numerical results are derived by using the calculated

components of the variational series. The obtained results are found to be in good agreement with the exact solution.
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1. Introduction

The variational iteration method [1–7] is a powerful method to investigate approximate solutions or even
closed form analytical solutions of nonlinear evolution equations. In addition, no linearization or perturbation
is required by the method. Recently, the method has been applied to investigate many nonlinear partial
differential equations and autonomous and singular ordinary differential equations such that solitary wave
solutions, rational solutions, compacton solutions and other types of solution were found [1–19]. The
variational iteration method has many merits and has much advantages over the Adomian decomposition
method [13–17].

Drãgãnescu and Cãpãlnãsan [10] applied the variational iteration method to a nonlinear elastic model
describing the acceleration of the relaxation process in the presence of the vibrations. The combination of a
perturbation method, variational iteration method, method of variation of constants and averaging method to
establish an approximate solution of one degree of freedom on weakly nonlinear systems was proposed in Ref.
[11]. The application of the variational iteration method to nonlinear fractional differential equations and
Helmholtz equation can be found in Refs. [7,12,13]. This method is used for solving nonlinear dispersive
equations in Ref. [14]. In Ref. [15] the applications of the present methods to some nonlinear partial
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differential equations are provided. Moreover, the method was successfully applied to delay differential
equations in Ref. [2], to autonomous ordinary differential systems [4], and other fields [16,17].

In the past decades, directly seeking for exact solutions of nonlinear partial differential equations
has become one of the central themes of perpetual interest in Mathematical Physics. Nonlinear wave
phenomena appear in many fields, such as fluid mechanics, plasma physics, biology, hydrodynamics,
solid state physics, and optical fibers. These nonlinear phenomena are often related to nonlinear wave
equations. In order to understand better these phenomena as well as further apply them in the practical
life, it is important to seek their exact solutions. Many powerful methods had been developed such
as Backlund transformation [18,19], Darboux transformation [20], the inverse scattering transformation [21],
the bilinear method [22], the tanh method [23,24], the sine–cosine method [25,26], the homogeneous
balance method [27], the Riccati method [28], the Jacobi elliptic function method [29], the extended Jacobi
elliptic function method [30], etc.

In the well-known Korteweg–de Vries (KdV) equation

ut � auux þ uxxx ¼ 0, (1)

the nonlinear term uux causes the steepening of the wave form. On the other hand, the dispersion term uxxx in
this equation makes the wave form spread. Due to the balance between this weak nonlinearty and dispersion,
solitons exist [31].

The genuinely nonlinear dispersive equation Kðm; pÞ; which generalizes the KdV equation (1), is given by

ut þ aðumÞx þ ðu
pÞxxx ¼ 0; m; pX1, (2)

see Rosenau and Hyman [32]. The convection term of Kðm; pÞ is obviously the nonlinear part of it.
Additionally, by this reason the scattering term in Eq. (2) is genuinely nonlinear. In Refs. [30,32], the authors
mentioned that the important interaction in between nonlinear convection with real nonlinear scattering
generates solitary waves with exact compact support which are called compactons. Compacton is a soliton
solution which have finite wave length or free of exponential wings. Unlike soliton that narrows as the
amplitude increases, the compactons width is independent of its amplitude. The solution of Eq. (2) is also very
interesting because of the local nature by which it can serve as the reflection of a wide range of extraordinary
nature [33].

The aim of this paper is to extend the variational iteration method of He [1–7] to derive the numerical
and exact compacton solutions of the nonlinear dispersive Kðm; pÞ equation (2) subject to the initial
condition:

ut þ ðu
mÞx þ ðu

pÞxxx ¼ 0; m41; 1ppp3, ð3aÞ

uðx; 0Þ ¼ f ðxÞ. ð3bÞ

2. Variational iteration method

To illustrate the basic concepts of the variational iteration method, we consider the following differential
equation:

LuþNu ¼ gðx; tÞ, (4)

where L is a linear differential operator, N a nonlinear operator and gðx; tÞ an inhomogeneous term.
According to the variational iteration method, we can construct a correct functional as follows:

unþ1ðx; tÞ ¼ unðx; tÞ þ

Z x

0

lfLunðx; tÞ þ ~Nunðx; tÞ � gðx; tÞgdt; nX0, (5)

where l is a general Lagrangian multiplier [34] which can be identified optimally by the variational theory
[36–38], the subscript n denotes the nth-order approximation, and ~un is considered as a restricted variation
[34,35], i.e., d ~un ¼ 0:

To illustrate the above theory, we implement the variational iteration method for finding the exact solution
of the nonlinear dispersive Kðm; pÞ equation (2) subject to (3). This problem will be handled more easily,
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