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h i g h l i g h t s

• The mass of gravitationally bound rotational e+–ν–e− states is that of Z bosons.
• The Z boson is apparently a relativistic rotational e+–ν–e− structure.
• The gravitational Bohr type analysis uses SR and has no adjustable parameters.
• Gravitational and Coulombic forces suffice to model hadrons and bosons.
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a b s t r a c t

In a recent work we have shown that the mass of W± bosons can be computed from first
principles by modeling these bosons as relativistic rotational bound states consisting of
e±–νe pairs, and by employing the de Broglie wavelength equation together with Newton’s
universal gravitational law but with gravitational instead of rest masses (Vayenas et al.,
2016). Here, we present similar calculations for the Zo boson which we model as a bound
state of e+–νe–e− with an electron antineutrino at the center of the rotating ring. This
appears consistent with the fact that Zo bosons are known to decay primarily to e+–e−

pairs. The above models contain no adjustable parameters. The computed Zo boson mass
(91.72 GeV/c2), as well as the ratio of the masses of Zo and W± bosons, differ by less than
0.6% and 0.9% respectively from the experimental values.

© 2016 Published by Elsevier B.V.

1. Introduction

In the Standard Model the W± and Zo bosons mediate the Weak Interaction. Their masses are 80.42 GeV/c2 and
91.19 GeV/c2 respectively, i.e. two orders of magnitude larger than those of baryons (∼1 GeV/c2) and five orders of mag-
nitude larger than the masses of positrons and electrons (∼0.511 MeV/c2). The W+ and W− bosons are known to decay to
e+–νe and e−–νe pairs respectively [1,2]. The Zo bosons are known to decay primarily to e+–e− pairs, but also to µ+–µ−,
τ+–τ− and q–q pairs, the latter leading to the formation of hadrons [1,2].

After the discovery of neutrino oscillations [3,4], it has been established that neutrinos have nonzero rest masses, which
for electron neutrinos are extremely small, of the order of 0.1 eV [5,6]. However, it is easy to show that if one uses gravita-
tional masses in Newton’s gravitational law [7,8], then the gravitational interactions between highly energetic relativistic
neutrinos can be quite strong [7,8], as anticipated fromWheeler’s analysis of neutrino geons [9].
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The idea that hadronsmay be viewed asmicroscopic black holes [10,11], where gravitational collapse is prevented by the
uncertainty principle, has been discussed recently in Refs. [12,13]. The use of Bohr-type models to establish a link between
black holes and quantum gravity has also been discussed recently in Refs. [14,15].

In a series of papers [7,8,16,17] we have shown that when accounting for the equivalence principle of inertial and
gravitational mass (mi = mg) [18,19], and for the inertial mass dependence on the rest mass mo and the Lorentz factor
γ via the expression mi = γ 3mo, which was originally derived by Einstein for linear motion in Ref. [20] and was recently
shown to hold also for arbitrary motion in Ref. [8], then Newton’s universal gravitational law takes the following form:
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which form1,0 = m2,0 = m0 and γ1 = γ2 reduces to
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Gm2

oγ
6

r2
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This equation has been used by the authors and others in a simple three or two-rotating neutrino Bohr-type model
[7,8] to show that the resulting gravitationally confined structures have masses of the order of 1 GeV. For the case of three
rotating particles the mass of the resulting bound state is given by [16]

m = 313/12n2
B(2ℓB + 1)1/6m1/3

Pl m2/3
o , (3)

where nB is a positive integer (1, 2, . . .), ℓB is zero or a positive integer (0, 1, 2, 3, . . .) and

mPl =


h̄c
G

1/2

, (4)

is the Planck mass.
The masses computed from Eqs. (3) are of the order of the masses of hadrons. This result has also been confirmed via the

use of Schwarzschild geodesics of general relativity (GR) [8].
A similar equation has been used very recently to compute the masses of W± bosons, modeled as relativistic e±–νe

pairs [21]. The resulting equation

mW± = (2mPlmemν)
1/3

= 81.71 GeV/c2, (5)

is in very good agreement with the experimental value of 80.42 GeV/c2 [1,2].
It is interesting to note that the good agreement between the relativistic gravitational Newtonian Law of Eq. (1) and

general relativity (GR) holds not only for fm size systems, such as hadrons, but also for macroscopic planetary systems,
where the perihelion precession angle of Mercury computed from Eq. (1) is found to coincide with that predicted by GR
[22,23], in qualitative agreement with the results of the semiempirical special relativistic (SR) approach of Silberstein back
in 1917 [24].

It is also worth noting that the relativistic gravitational Newtonian Law of Eqs. (1) and (2) provides a simple explanation
for dark matter, since omitting the Lorentz factors γ 3

1 and γ 3
2 terms leads to an underestimation of the actual gravitational

attraction between stars and between galaxies which leads to the need of postulating the existence of dark matter [7].
The remarkable ability of models of relativistic neutrinos, as well as of other fast particles, to produce bound rotational

states with rest masses which are many orders of magnitude larger than the rest mass of the constituent particles, is simply
due to energy conservation.

For example, denoting by γ3 (= (1 − v2/c2)−1/2) the Lorentz factor of a neutrino in a rotating three-neutrino system,
whose center of mass is at rest with respect to the observer, we find

E = mc2 = 3γ3moc2, (6)

wherem is the mass of the composite system, thus

m = 3γ3mo. (7)

The value of γ3 for the three-particle Bohr-type model turns out to be [7,8,16]

γ3 = 31/12n2
B(2ℓB + 1)1/6m1/3

Pl /m1/3
o , (8)

thus, via (7) one obtains Eq. (3), where the non-negative integer ℓB is analogous to the second quantum number in the Bohr
model of the H atom. In earlier studies [7,8] we had used in Eqs. (3) and (8) the notation 2n − 1 with n a positive integer
instead of 2ℓB + 1. Here, we use the symbol ℓB = n− 1, which is consistent with the notation of ℓ for the quantum number
of the H atom, which similarly with our analysis, provides a measure of the angular momentum of the state of the system.
The symbol nB (where ‘‘B’’ stands for Bohr) is reserved for another quantum number which plays a role similar to that of the
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