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h i g h l i g h t s

• A new power network model with coupling-frequency weighting exponent is proposed.
• The influence of weighting exponent on synchronizability of power network is studied.
• The synchronization cost caused by phase differences of power plants is proposed and studied

a r t i c l e i n f o

Article history:
Received 18 January 2016
Received in revised form 15 June 2016
Available online 25 July 2016

Keywords:
Power network
Synchronizability
Weighting exponent
Synchronization cost

a b s t r a c t

Second-order Kuramoto-like oscillators with dissimilar natural frequencies are used as
a coarse-scale model for an electrical power network that contains generators and con-
sumers. This paper proposes a newpower networkmodelwith coupling-frequencyweight-
ing exponent. Furthermore, the influence of the weighting exponent on synchronization of
a power network is investigated through numerical simulations. It is observed that the
synchronizability is significantly influenced by the coupling-frequency weighting coeffi-
cient with different magnitude categories. Furthermore, the synchronization cost caused
by phase differences of power plants on the synchronization of the proposed power net-
work model is studied. Numerical simulation shows that the synchronization cost will get
larger with the coupling-frequency weighting exponent increasing further.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The synchronization process of large populations of weakly coupled oscillators is a fascinating topic in various scientific
disciplines such as physics, biology, and sociology [1–4]. It was well known that Kuramoto model and its variations provide
the simplest setting to study the collective behavior,where all the oscillators in a large-scale network are locked to a common
frequency, although their native frequencies are different and rather distributed [5,4,6]. As we know, the power network
is closely related to the interacted Kuramoto oscillators, in particular, the second-order Kuramoto-like model [7–9]. Power
network is generally formed by a large number of oscillatorswith the purpose to deliver electricity from the generating units
(power plants) to the end users (houses, industries etc.) A node in power network is defined to be a point at which power is
injected by a generator or extracted by consumers, or to other points. A link is then defined as a connection between any pair
of such nodes. As a complex and large-scale system, the power network has rich nonlinear dynamics, and its synchronization
and transient stability are very important issues [10–14]. In power grids, power plants must keep a proper synchronization
to avoid energy supply disturbances and blackouts [15]. The existence of a status of synchronization is dependent on
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competition between the phase differences and the natural frequencies of oscillators. Moreover, it is commonly agreed that
the coupling schemes of a network with oscillator nodes usually are impacted by the native frequencies of the oscillators’
own. For power networks near the center of the frequency distribution, only small coupling strength is needed tomake them
lock together; whereas for those near both ends of the frequency distribution, large coupling strength is required to realize
synchronization [16,17]. This implies that the coupling strength plays an important role on achieving the synchronization
of all the oscillators in power networks. So far, many previous works mainly considered the influence of the topology
structure, instead of the oscillator itself, on the synchronization of a power network. Very recently, Zhu studied the effects
of coupling-frequency correlations on synchronization in complete graphs, where the weighted coupling exponent plays
an important role [18]. Motivated by their works, we discuss the synchronization problem of a power network model with
coupling-frequency weighting exponent by adjusting the coupling strength. Here, we focus on the relationship between the
synchronizability of the power network and the weighting exponent.

As known, in power grids, the phases of the voltages of generators and consumers are required to be synchronized
around a certain specific frequency. It is well known that power networks consisting of phase oscillators rely on not only
frequency synchronization, but also phase synchronization. Generally, frequency synchronization is easily achievable than
phase synchronization because the phase difference among the frequency-synchronized oscillators often keeps a non-zero
constant. Due to the phase difference in the voltage among generators and consumers, power loss that is consumed as heat
in power lines is inevitable. From above point of view, it is reasonable to regard the phase difference in power networks
as synchronization cost. Considering political and economic conditions, it is necessary to reduce the synchronization loss
among the plants due to the phase difference in the frequency-synchronized power plants. Therefore, it is interesting to
know if the frequency synchronization of a power network with coupling-frequency weighting exponent can be ensured by
adjustingweighting exponent, and evenmore inwhichmagnitude categories of theweighting exponent the synchronization
cost is lower.

Motivated by the above discussion, it will be investigated in which magnitude categories of the weighting exponent in a
power network will influence on its synchronization, and how large the synchronization cost caused by phase differences of
power plants during the synchronization of the power network is. This paper is organized as follows. A new power network
model with coupling-frequency weighting exponent is presented in Section 2. The synchronization manifold is introduced
in Section 3. In Section 4, the influence of the coupling-frequency weighting exponent on synchronizability of the power
network is studied in detail. Section 5 devoted to study the synchronization cost of the proposed model with different
weighting exponents. The conclusions of this work are drawn in Section 6.

2. The coupling-frequency weighting power network model

In order to understand the oscillatory dynamics of a power network and the collective phenomena emerging through
their nonlinear dynamics, coarse-scale models of the power network is considered [19]. We consider an oscillator model
where each element is one of two types of elements, generator or consumer. Suppose a power network consisting of N
rotating machines. Each machine is characterized by the same type equation of motion with the electric power Pj, where it
generates power (when Pj > 0) or consumes power (when Pj < 0). Furthermore, the state of each machine is determined
by its mechanical phase angle θj(t) and phase velocity θ̇j(t).

During the regular operation, generators and consumers within the network run with the same frequency Ω = 2π ×

50 Hz. The phase of each element is then described as

θj(t) = Ωt + φj(t), (1)

where φj(t) stands for the phase difference to the reference phase Ωt .
The equation of motion for the phase deviation φj(t) is obtained via the principle of energy conservation at each element

and can be described by

Psource,j = Pdiss,j + Pacc,j + Ptrans,j. (2)

The dissipated energy, which is caused by the rotation of the mechanical rotor is described as follows:

Pdiss,j = κ(θ̇j)
2, (3)

where κ is a damping coefficient.
The kinetic energy accumulated is given by

Pacc,j =
1
2
I
d
dt

(θ̇j)
2, (4)

where I is the moment of inertia.
The power transmitted between two elements i and j is proportional to the sinus of the phase difference and the capacity

of transmission line. Here, we assume that the voltage angles and the rotor angles are the same and the maximum capacity
of the transmission line is Pmax,i,j. So the transmitted power follows

Ptrans,ij = Pmax,ij sin(θi − θj). (5)
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