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h i g h l i g h t s

• We investigate the solutions for the modified fractional diffusion equation.
• Exact semi-infinite and finite solutions subject to absorbing boundaries are found.
• The crossover between more and less anomalous behaviour is demonstrated.
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a b s t r a c t

We investigate the solutions of a modified fractional diffusion equation which has a sec-
ondary fractional time derivative acting on a diffusion operator. We obtain analytical solu-
tions for themodified equation in the finite and semi-infinite domains subject to absorbing
boundary conditions. Most of the results have been derived by using the Laplace transform,
the Fourier Cosine transform, the Mellin transform and the properties of Fox H function.
We show that the semi-infinite solution can be expressed using an infinite series of Fox
H functions similar to the infinite case, while the finite solution requires double infinite
series including both Fox H functions and trigonometric functions instead of one infinite
series. The characteristic crossover between more and less anomalous behaviour as well
as the effect of absorbing boundary conditions are clearly demonstrated according to the
analytical solutions.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Diffusion is one of the most important phenomena encountered in numerous physical, chemical and biological sys-
tems [1]. However, the picture that has emerged over the last few decades clearly reveals that an increasing number of nat-
ural phenomena do not fit into the relatively simple description of normal diffusion [2]. Anomalous diffusion turns out to be
quite ubiquitous and it is characterized by a nonlinear behaviour for themean square displacement in the course of time [3].

The actual reason or the very nature of anomalous diffusionmay vary a lot and there aremany approaches or frameworks
such as fractional partial differential equations and continuous time random walk models that can be used to describe
these anomalous diffusion processes [4]. Depending on the underlyingmechanismof anomalous diffusion, various fractional
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model equations have been proposed to account for the characteristic behaviour of anomalous diffusion. For example, the
fractional Fokker–Planck equation has been introduced for the description of anomalous transport in the presence of an
external field [5]. In addition, more generalized fractional diffusion equations that usually contain a mix of nonlinear terms
and space- or time-fractional derivatives have been extensively investigated due to their broadness of applications [6–13].
In all cases, it is always of interest to find exact analytical solutions subject to certain initial and boundary conditions if not
impossible.

Recently, somemodified fractional diffusion models have been proposed to describe processes that become less anoma-
lous as time progresses by the inclusion of a secondary fractional time derivative acting on a diffusion operator [14–18],
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where 0 < α < β ≤ 1 and Kα, Kβ are positive constants. In fact, this modified fractional diffusion equation is a special case
of the more generalized distributed or variable order fractional diffusion equations which are employed to precisely depict
the decelerating or accelerating diffusion processes [19,20]. Particularly, wemention that for themulti-term time-fractional
diffusion-wave equation with constant or variable coefficients, exact solutions subject to different initial and boundary con-
ditions have been given in form of the Fourier series via the multivariate or multinomial Mittag-Leffler function [21–24].
Some numerical methods have also been proposed for such initial value problems in the general nonlinear case [25].

A possible application of the modified fractional diffusion equation with two time scales is in econophysics and particu-
larly the crossover betweenmore and less anomalous behaviour has been observed in the volatility of some share prices [17].
In general, the modified equation is advantageous when describing processes which get less subdiffusive in the course of
time. Note that the Riemann–Liouville fractional derivative operator is defined by
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At this point we note that Henry and Wearne [18] find in their derivation of fractional reaction–diffusion equations an
additional term
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on the right of Eq. (1) where L −1 is the Laplace inverse transform. The value of this term is unclear as it necessitates
the behaviour of the term to be known near t = 0. Recall that the Laplace transform of the Riemann–Liouville fractional
derivative is given by
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, 0 < α ≤ 1. (4)

Taking the Laplace transform of Eq. (1), we obtain
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Note if we include the additional term then the last term in Eq. (5) cancels. However, if we do not include the additional
term, it can be shown from the solution of Eq. (1) that these terms are zero and can be neglected [17]. In addition, this
extra term can also be absorbed into the initial condition. Therefore, we will not consider the additional term during our
derivation for the same reason.

For this modified fractional diffusion equation, Langlands et al. obtained the solutionwith the form of an infinite series of
FoxH functions in an infinite domain [17]; Liu et al. discussed the numericalmethod and analytical technique of themodified
anomalous sub-diffusion equation with a nonlinear source term [26,27]; Chen and A. Mohebbi et al. developed different
numerical methods to solve the two-dimensional modified diffusion equation [28,29]. It is also worth to note that similar
fractional cable model equations have been introduced for modelling electrodiffusion of ions in nerve cells when molecular
diffusion is anomalous subdiffusion due to binding, crowding or trapping [30]. Exact analytic solutions of the fractional cable
equations have been derived in the infinite, semi-infinite and finite domains for different boundary conditions using Fourier
and Laplace transform methods [31,32]. For the purpose of this paper, we will only consider the solutions for the modified
fractional diffusion equation in the finite and semi-infinite domains subject to absorbing boundary condition.

2. Finite solution

For the case of a finite domain, the problem to be solved can be recast as a boundary value problem with the following
boundary and initial conditions

P(−ℓ, t) = 0, P(ℓ, t) = 0, P(x, 0) = δ(x), ℓ > 0, (6)
where δ is the Dirac delta function and x = 0 is the starting point of diffusion containing the initial concentration of the
distribution.
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