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• Two examples are taken into the power-law transition state theory.
• This theory allows accordance with experimental values by a power-law parameter.
• The power-law TST shows a good agreement with experiments.
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a b s t r a c t

The reaction of a hydroxyl radical withmolecular hydrogen and the respiration in Camellia
Japonica are used as examples for studying chemical reaction rate constants by the power-
law transition state theory. In the first example, the rate constants are numerically obtained
at different temperature and activation energies based on the Morse potential at the po-
tential well and improved potential energy surface 5 (I5B) at the saddle point respectively,
and the relationship between the rate constants and the power-law parameter is plotted
as well. In the second one, especially, the power-law parameter presents an abrupt change
at temperature 290 K around, which may be explained that the Camellia Japonica is the
ombrophyte, and the activity of biological enzyme reaches the maximum at this tempera-
ture. This theory allows accordance with experimental values by a power-law parameter.
It is found that the values of the power-law parameter in both examples deviate from 1 but
not too much and lie in the 0–1 range and proved that power-law transition state theory
shows a good agreement with experiments.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The father of reaction rate theory is Arrheniuswho in his famous 1889 paper investigated the temperature dependence of
the rates and postulated the existence of the activated intermediate [1]. His idea of an activated intermediate was amplified
upon by a number of authors during the next 35 years. The collision theory raised by Lewis built on the Arrhenius empir-
ical formula, the transition state theory (TST) introduced by Winger and Eyring based on the canonical ensemble theory,
and the Kramers escape rate provided by Kramers from the kinetic theory of gas [2]. The successes and challenges of above
rate theories coexist. Now, what is the most challenging problem in the rate theory is the key equilibrium assumption. It
is said that there exists quasi-equilibrium in the system and the transition state in which reacting species pass only once
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from the reactants to the products, the thermodynamic equilibrium (obeying Maxwell–Boltzmann distribution) must be
available throughout the whole system, and any disturbance to the Maxwell–Boltzmann distribution is almost negligible at
all times [3]. However, this key assumption could not be reached in real systems, such as chemical systems and dissipative
biological systems [1–3]. Thereby the traditional rate theoriesmust be generalized to the nonequilibrium systems. Recently,
studies [4–6] have demonstrated that a system far away from equilibrium does not have to relax to a thermal equilibrium
statewithMaxwell–Boltzmann distribution, but asymptotically approaches a nonequilibrium stationary statewith a power-
law distribution. What is more, this power-law distribution has been observed in astrophysics, chemistry etc. [7–10]. The
typical forms of such power-law distribution include the κ-distribution or the generalized Lorentzian distributions observed
in the solar winds and space plasmas [11–16], the q-distributions within nonextensive statistical mechanics [4], and the
α-distribution, just like P(E) ∼ E−α [12,17,18]. These power-law distributions may lead to processes different from those
in the realm governed by classical statistics with Maxwell–Boltzmann distribution. Particularly it is worth mentioning that
the q-distributionswithin nonextensive statisticalmechanics have been successfully applied into interpreting somephysical
properties of nonequilibrium systems [4]. Nonextensivity (herein refer to the power-law parameter q ≠ 1) has presented
some properties in the real physical systems, so it is reasonable to use this theory to study the systems far away from equi-
librium. The power-law TST (transition state theory in systems with power-law distributions) reaction rate coefficients for
the elementary bimolecular reactions with [19] or without [20] tunneling correction, and the unimolecular reactions [21],
the collision theory power-law rate coefficients [22], and the Kramers escape rate with power distribution [23–25] have
been established respectively, next step is then to apply them to the real systems. In this paper, we mainly focus on the
application with power-law TST.

Considering the reaction processes in an open system far away from equilibrium can be described as the following form,

A
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−→ B, (1)

where kAB is a rate constant of the reaction process changing the reactant A into the product B. In the previous work, the
formula of power-law reaction rate constant in one-dimension system, which is deduced and discussed by Du, is [5],
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withm is themass,β = 1/kBT , kB is the Boltzmann constant, T is the temperature, and v is the power-law parameter, B(a, b)
is the beta function, Vs and Va are the potential energies at the saddle point and reactant well respectively, and Vs(0) means
the value of the saddle point.

In this paper, our purpose is applying the power-law TST into practice. In Section 2, two examples, which are the
OH+H2 → H+H2O reaction and the respiration in Camellia Japonica, are introduced in detail. In the first one, based on the
experimental values and the method of numerical integration, relevant values of parameter v at different temperature and
activation energies are got, and they are listed in Table 2. In addition, the connection between the rate constants and values
of v is presented in Fig. 3. In the second one, we adopt the expression of power-law Arrhenius rate constants (see Ref. [5],
Eq. (63)) and calculate the values of v at different temperature listed in Table 3. Also the relationship of temperature T and
rate constants kR is plotted in Fig. 4. In Section 3, the conclusion is given.

2. Applications of two examples, results and discussions

2.1. OH + H2 → H + H2O

This reaction is the foundation for studying the combustion reaction [26], and it is also the basic for the atmospheric
chemistry [27,28]. The process can be described as,

OH + H2 → H + H2O. (4)

It is obvious that the potential functions in Eqs. (2) and (3) at the reactant region and transition state region need to know
if we want to get the rate constants k. In this paper, Morse potential and improved potential energy surface 5(I5B) [29,30]
are used at the reactant region and transition state region respectively. At the reactant region, the potential function is
described as Morse function,

Va = De (1 − exp [−a (R − Re)])2 , (5)

where De is the depth of the well, R is the distance of two atoms, Re is the equilibrium bond distances (obtained from ex-
periment data), a = ωe

√
m/2De, ωe is the frequency of the atom,m is the mass of the atom. The experimental values are all

listed in Table 1.
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