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a b s t r a c t

Anomalous diffusion of random walks has been extensively studied for the case of
non-interacting particles. Here we study the evolution of nonlinear partial differential
equations by interpreting them as Fokker–Planck equations arising from interactions
among random walkers. We extend the formalism of generalized Hurst exponents to the
study of nonlinear evolution equations and apply it to several illustrative examples. They
include an analytically solvable case of a nonlinear diffusion constant and three nonlinear
equations which are not analytically solvable: the usual Fisher equation which contains
a quadratic nonlinearity, a generalization of the Fisher equation with density-dependent
diffusion constant, and the Nagumo equation which incorporates a cubic rather than a
quadratic nonlinearity. We estimate the generalized Hurst exponents.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Random walks and anomalous diffusion [1–5] have traditionally been approached from the perspective of whether or
not they include memory. Markoffian processes describe random walks with short (e.g., exponentially decaying) memory,
whereas non-Markoffian walks describe the general case of random walks with memory of the (possibly complete)
history [6]. Less work has gone towards the investigation of how interactions among randomwalkers can change the global
behavior. The presence of even local interactions can dramatically alter global behavior. For example, when the diffusion
equation for Brownian motion governed by aWiener process is augmented with a convective termwhose strength is linear
in the local density of the walkers, the resulting Burgers equation leads to qualitatively different behavior: the principle of
superposition breaks down and Gaussian solutions become unstable. A recent study [7] has generalized the formalism of
Hurst exponents to address the problem in the context of Burgers equation arising from hydrodynamic models of vehicular
traffic flow. Specifically, it was shown that initial conditions become important due to the breakdown of the principle of
linear superposition. In the present paper we extend that study to several further cases of interacting random walkers.
The Hurst exponent quantifies how quickly particles diffuse. For the case of zero drift velocity, the Hurst exponent H

describes how the mean squared displacement of a random walker 〈x2〉 ∼ t2H scales with time t . Normal diffusion gives
H = 1/2 due to the central limit theorem,which guarantees convergence of the probability density function of thewalkers’s
position to a Gaussian. For non-interacting particles, the Fokker–Planck equation for the probability density P(x, t) of a par-
ticle is linear in P . Hence, the propagator of the Fokker–Planck equation contains all the relevant information concerning H .
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However, when particles interact, the resulting evolution equation might be nonlinear; hence Green’s functions and prop-
agators will obviously not exist.
In Section 2 we recall and discuss the findings of Ref. [7] that the usual method of estimating Hurst exponents can lead to

spurious predictions as a result of non-negligible effects of initial conditions. In Sections 3–6 we apply the method to study
an exactly solvable system aswell as a number of nonlinear diffusion equations, including the Fisher andNagumo equations.

2. Hurst exponents for interacting random walkers

2.1. Generalized Hurst exponents

A number of methods can be applied to quantify different aspects of anomalous diffusion. Anomalous diffusion has
been studied using a number of formalisms and approaches. Continuous time random walks [2,8] and generalized master
equations [9] (GMEs) are formally equivalent [10]. Fractional partial differential equations [11,12] are equivalent to GMEs.
Here we use the formalism of Hurst exponents, which can be related to Hölder exponents [13–16], describing the degree of
differentiability along the trajectories. This formalism has been used to study the anomalous dynamics of different systems.
Recently, this has been applied in the field of finance as well [17].
One can define the Hurst exponent H(q) for a stationary stochastic process [14,16] in terms of the scaling of the absolute

moments of the density:

x̄ ≡ 〈x〉 (1)

Mq(t) ≡ 〈|x− x̄|q〉 ∼ tqH(q) (2)

where the averages are taken over the propagator. Brownian motion and normal diffusion correspond to H(q) = H = 1/2,
whereas anomalous diffusion corresponds to all other cases. As discussed in Ref. [7], one can generalize the concept to allow
a scale dependence [18–20], such that H = H(q, t):

Mq(t) ∼ tqH(q,t). (3)

For instance, the telegrapher’s equation [21] has a mean squared displacement that grows quadratically for small times but
linearly for larger times. The behavior is ballistic at small times, (H(q, t) ≈ 1) but diffusive at large times (H(q, t)→ 1/2).
This behavior can also be written in terms of the asymptotically defined Hurst exponent H(q) and a scaling function f , such
that Mq(t) ∼ tqH(q)f (t/t∗), t∗ being the typical crossover time and H(q) = 1/2 with f ∼ t for t � t∗ and f ∼ constant
for t � t∗. However, we don’t know, a priori, that such crossovers are generic, which limits the applicability of this scaling
description. Also, for systems for which the Hurst exponent changes continuously in time, it is difficult to write proper
scaling function and thus Eq. (3) gives a natural and more generic way to approach a problem.

2.2. Nonlinear Fokker–Planck equations

Standard methods of deriving Fokker–Planck equations from Langevin equations lead always to linear equations [7].
Consider, for example, the Boltzmann equation for gases, obeyed by the one-molecule distribution function. It is nonlinear,
in contrast to the underlying linear Liouville equation for the N-molecule Liouville density. In the absence of inter-particle
interactions, the Boltzmann equation would be linear. Similarly, if the gas molecules interact with a fixed system of random
scatterers, the Boltzmann equation would be nontrivial but still linear. The standard manner of applying Hurst and Hölder
exponentswouldwork here. The case of interacting randomwalkers is different. If intermolecular interactions are turned on,
nonlinearity enters the picture and immediatelymakes unavailable the superposition principle and propagator analysis.We
recall the standardmanner inwhich theHurst exponentH = H(2) is usually obtained from thebehavior of themean squared
displacement for linear equations. In terms of the propagator or the Green function ψ(x, x0, t) and the initial distribution
P(x0), the Hurst exponent is given by the scaling behavior of∫

∞

−∞

∫
∞

−∞

dxdx0 (x− x0)2ψ(x, x0, t)P(x0).

For a translationally invariant (homogeneous) system such as the one under consideration in this paper, this equation
reduces to

〈x2〉δ =
∫
dx x2ψ(x, t) (4)

because the propagator is a function of the difference x− x0. We use the suffix δ in the left hand side of Eq. (4) to emphasize
that the 〈x2〉 used here can be considered to be the one calculated for an initially localized initial condition P(x0) = δ(x0).
This can also be used for a collection of many random walkers provided they are non-interacting among themselves: the
initial distribution P0 is irrelevant in a linear system of non-interacting particles.
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