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a b s t r a c t

Phase-space Lagrangian dynamics in ideal fluids (i.e., continua) is usually related to the so-
called ideal tracer particles. The latter, which can in principle be permitted to have arbitrary
initial velocities, are understood as particles of infinitesimal size which do not produce
significant perturbations of the fluid and do not interact among themselves. An unsolved
theoretical problem is the correct definition of their dynamics in ideal fluids. The issue
is relevant in order to exhibit the connection between fluid dynamics and the classical
dynamical system, underlying aprescribed fluid system,whichuniquely generates its time-
evolution.
The goal of this paper is to show that the tracer-particle dynamics can be exactly

established for an arbitrary incompressible fluid uniquely based on the construction of an
inverse kinetic theory (IKT) [M. Tessarotto, M. Ellero, Bull. Am. Phys. Soc. 45 (9) (2000) 40;
M. Tessarotto, M. Ellero, AIP Conf. Proc. 762 (2005) 108. RGD24, Italy, July 10–16, 2004;
M. Ellero, M. Tessarotto, Physica A 355 (2005) 233; M. Tessarotto, M. Ellero, Physica A 373
(2007) 142, arXiv: physics/0602140; M. Tessarotto, M. Ellero, in: M.S. Ivanov, A.K. Rebrov
(Eds.), Proc. 25th RGD, International Symposium on Rarefied gas Dynamics, St. Petersburg,
Russia, July 21–28, 2006, Novosibirsk Publ. House of the Siberian Branch of the Russian
Academy of Sciences, 2007, p. 1001, arXiv:physics/0611113;M. Tessarotto, C. Cremaschini,
Strong solutions of the incompressible Navier–Stokes equations in external domains: Local
existence and uniqueness, arXiv:0809.5164v1 [math-ph], 2008]. As an example, the case
of an incompressible Newtonian thermofluid is considered here.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The basic aspect of fluid dynamics is related to the definition of the Lagrangian dynamics which characterizes both
compressible and incompressible fluids. The customary approach to the Lagrangian formulation is based typically on a
configuration-space description, i.e., on the introduction of the (configuration-space) Lagrangian path, r(t), spanning the
configuration-space (fluid domain) Ω . Here r(t) denotes the solution of the initial-value problem Dr

Dt = V(r, t), with
r(to) = ro. Here D

Dt ≡
∂
∂t + V · ∇ denotes the so-called ‘‘fluid’’ convective derivative, ro an arbitrary vector belonging

toΩ and V(r, t) the velocity fluid field, to be assumed continuous inΩ (closure ofΩ) and suitably smooth inΩ . However,
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in turbulence theory the statistical formulation for the associated joint probability density for velocity increments requires
the introduction of a phase-space representation of suitable type [1], in which usually the phase-space is identified with
Γ = Ω × R3 (with closure Γ = Ω × R3), here denoted as restricted phase-space. Therefore it is natural to seek possible
phase-space representations of this type for fluid systems. The goal of this investigation is concerned with the formulation
of restricted phase-space Lagrangian dynamics in such a way that the phase-space Γ coincides with the direct product space
Γ = Ω×V ,Ω being the fluid domain andV (velocity space) the setR3. In particular in this paper, extending the formulation
previously developed (Cremaschini et al. [2] and Tessarotto et al. [3,4]), we shall adopt for this purpose a so-called phase-
space inverse kinetic theory (IKT)(see also Tessarotto et al. [5–10]). Basic feature (of such an approach) it that is relies on first
principles, i.e., classical statistical mechanics and a prescribed complete set of fluid equation. This permits us to advance in
time the relevant fluid fields by means of phase-space Lagrangian equations defined by the vector field X(x, t), namely

dx
dt
= X(x, t),

x(to) = xo,
(1)

where xo is an arbitrary initial state of Γ (closure of the phase-space Γ ). The result appears relevant in particular for the
following reasons: (1) the Lagrangian dynamics here determined permits to advance in time self-consistently the fluid fields,
i.e., in such a way that they satisfy identically the required set of fluid equations. For isothermal fluids, this conclusion is
consistent with the results indicated previously [7]; (2) the Lagrangian dynamics takes into account the specific form of the
phase-space distribution function which advances in time the fluid fields; (3) the theory permits an exact description of the
motion of those particles immersed in the fluid which follow the Lagrangian dynamics (classical molecules).
Phase-space Lagrangian dynamics and particle dynamics in ideal fluids are closely related issues. In fact both must be

uniquely described via a suitable complete set of fluid fields {Z(r, t)}which define the fluid state. This refers, in particular, to
the so-called ideal tracer particles, for which both self-interaction produced by the perturbations of the fluid fields generated
by the same particles and binary collisions among them are negligible (in this sense they can therefore be intended also
as ‘‘collisionless’’). It is well known, however, that in customary approaches (see for example Maxey and Riley [11]) the
equations of motion for ideal tracer particle are only known in some approximate sense and therefore do not reproduce
exactly the correct fluid dynamics.
The purpose of this paper is to show that an exact solution can be reached for phase-space Lagrangian dynamics, and

in particular for the conventional tracer dynamics, based on the formulation of a suitable IKT. By definition, an IKT must
provide the complete set of fluid equations describing the fluid, by means of velocity moments of an appropriate phase-
space probability density function (pdf).We intend to show that such a theory can be uniquely determined in the framework
of classical statistical mechanics by invoking suitable statistical assumptions on the IKT. In particular, we present here a
theory which applies to incompressible Newtonian fluids, including both isothermal and non-isothermal fluids [2–4]. In
the following we intend to show that customary tracer-dynamics equations due to several authors – including Tchen [12],
Corrsin and Lumley [13], Buevich [14] and Riley [15] andMaxey and Riley [11] – are incompatiblewith the exact phase-space
Lagrangian formulation here obtained.
In detail the plan of the paper is as follows. First, in Section 2 previous approaches to ideal tracer-particle dynamics

are summarized. Second in Section 3 a comparison between the Eulerian and the Lagrangian phase-space approaches is
provided. Furthermore, in Section 4 the IKT for incompressible thermofluids is presented. This permits us to determine
the appropriate form of the vector field X(x, t). Next, in Section 5 the Lagrangian formulation of IKT is discussed in detail.
The new set of phase-space Lagrangian equations are shown to advance uniquely in time the relevant fluid fields of an
incompressible thermofluid. As a basic consequence, in Section 6 we will derive the exact dynamics of ideal tracer particles
(see below for definition), comparing it with previous results.

2. Previous approaches to tracer-particle dynamics

The motion of small particles (such as solid particles or droplets, commonly found in natural phenomena and industrial
applications) which can be injected in a fluid with arbitrary initial velocity, in practice, may be very different from that of
the fluid. The accurate description of particle dynamics, as they are pushed along erratic trajectories by binary collisions (in
real fluids) and by fluctuations of the fluid fields (in ideal fluids), is fundamental to transport and mixing in turbulence [1].
It is essential, for example, in combustion processes [16], in the industrial production of nanoparticles [17] as well as in
atmospheric transport, cloud formation and air-quality monitoring of the atmosphere [18,19]. The Lagrangian approach –
denoted as the Lagrangian turbulence (LT) – has been fruitful in advancing the understanding of the anomalous statistical
properties of turbulent flows [20]. In particular, the dynamics of particle trajectories has been used successfully to describe
mixing and transport in turbulence [16,21]. Nevertheless, issues of fundamental importance remain unresolved (see for
exampleRefs. [22,23] for recent results regarding the Lagrangian viewof passive scalar turbulence). In the past, the treatment
of the Lagrangian dynamics in turbulence was based on stochastic models of various nature, pioneered by themeteorologist
Richardson [24] (see also Refs. [22,23]). These models, which are based on tools borrowed from the study of random
dynamical systems, typically rely – however – on experimental verification rather than on first principles. However, in
most cases there remains a lack of experimental data to verify the reliability of such models [23]. Verification can be based,



Download English Version:

https://daneshyari.com/en/article/977163

Download Persian Version:

https://daneshyari.com/article/977163

Daneshyari.com

https://daneshyari.com/en/article/977163
https://daneshyari.com/article/977163
https://daneshyari.com

