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a b s t r a c t

The minimum description length principle is a general methodology for statistical
modeling and inference that selects the best explanation for observed data as the one
allowing the shortest description of them. Application of this principle to the important
task of probability density estimation by histograms was previously proposed. We review
this approach and provide additional illustrative examples and an application to real-
world data, with a presentation emphasizing intuition and concrete arguments. We also
consider alternative ways of measuring the description lengths, that can be found to be
more suited in this context.We explicitly exhibit, analyze and compare, the complete forms
of the description lengthswith formulas involving the information entropy and redundancy
of the data, and not given elsewhere. Histogram estimation as performed here naturally
extends tomultidimensional data, and offers for them flexible and optimal subquantization
schemes. The framework can be very useful for modeling and reduction of complexity of
observed data, based on a general principle from statistical information theory, and placed
within a unifying informational perspective.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In statistical information processing, probability density estimation is a ubiquitous and very useful process. For
probability density estimation from observed data, a much common approach proceeds through the construction of an
empirical histogram with regular (equal width) bins. When a fixed number of bins is imposed, the construction of a
histogram is a rather straightforward operation. However, the number of bins in itself has amajor impact on the quality of the
estimation realized by the histogram for the underlying probability density. For a given number N of observed data points,
if the number of bins is too small, the resolution of the histogram is poor and leads to a very raw estimate of the probability
density. On the contrary, if the number of bins is too large, the counts of data points in the bins fluctuate strongly to yield
a very jerky histogram as a poor estimate for the probability density. This points to an optimal number of bins between
these two extremes that will lead to an optimal histogram for estimating the probability density. Any approach aiming at
determining an optimal number of bins needs necessarily to rely on a definite criterion tomeasure optimality in this context
with histograms. A specially interesting approach of this type is based on the principle of minimum description length.
The minimum description length (MDL) principle provides a general approach for statistical modeling and inference

from observed data [1–3]. Briefly stated, this principle amounts to choosing for data, among a class of possible models,
the model that allows the shortest description of the data. The MDL approach is rooted in the Kolmogorov theory of
complexity [4]. Since its formal introduction some thirty years ago [5], the MDL principle has developed along both
theoretical and practical directions. The theoretical foundations of the MDL principle have been investigated to great depth
in statistics, and new theoretical aspects are still being explored [1,3,6]. At the same time, the MDL principle has been
considered to provide solutions to a large variety of problems, including nonlinear time series modeling [7,8], Markov-
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process order estimation [9,10], data clustering [11,12], signal denoising [13,14], image segmentation [15,16], curve fitting
[17,18], analysis of chaotic systems [19,20], genomic sequencing [21,22], neural networks [23,24]. Novel applications also
are still emerging [6]. We believe that theMDL approach still holdsmany potentialities relevant to scientific investigation. A
specifically interesting aspect is that theMDL principle offers a unifying thread for approachingmany distinct tasks of signal
and data processing that otherwise would stand as separate problems. Furthermore, the unified view which is provided is
formulated as a information-theoretic framework, and this may be specially relevant to advance an information point of
view in science [25–27].
Application of the MDL principle to probability density estimation by histograms was introduced in Ref. [28]. Part of

the present paper consists in reviewing this approach of Ref. [28], and also in providing additional illustrative examples,
through a presentation emphasizing intuitive and concrete arguments. Implementation of theMDL principle critically relies
on definite specifications for measuring the description lengths. As another part of the present paper, we also consider
alternative ways of measuring the description lengths, which differ from the choice made in Ref. [28], and which arguably
can be foundmore suited in this context of probability density estimation by histograms. We also explicitly exhibit here the
complete forms of the description lengths that arise from the various choices, through formulas involving the information
entropy and redundancy of the data, and which are not given in other studies. And we analyze and compare these formulas
for the description lengths. We also provide an application to measured data, in the line of a presentation emphasizing
concrete and physical appreciation of the MDL approach. In this way, for a part the present paper has a pedagogical and
illustrative intent as it proposes a detailed and illustrated review emphasizing concrete interpretations and intuition, on the
MDL principle for probability density estimation by histograms. For another part, the paper provides additional results and
insight with comparison of alternative choices and complementary analyses.
Minimum description length is often associated with another comparable approach identified as minimum stochastic

complexity. These are two distinct, although related, approaches. In particular, stochastic complexity is usually based on
the introduction, for the parameters of the model, of a specific prior probability distribution, upon which the subsequent
results depend. A uniform prior can be used as in Ref. [28], or the so-called Jeffreys prior as in Ref. [3]. Both description
length and stochastic complexity are examined in Ref. [28] for probability density estimation by histograms. Ref. [29]
concentrates on stochastic complexity with uniform prior for probability density estimation by histograms. These two
notions of description length and stochastic complexity can be defined as distinct notions, as it emerges from Refs. [28,29,3].
However, some other studies imply the terminologies ‘‘description length’’ and ‘‘stochastic complexity’’ as synonyms to
designate a same underlying notion. Ref. [30] uses the terminologies ‘‘description length’’ and ‘‘stochastic complexity’’
essentially as synonymous, although there is a single underlying notionwhich is description length aswe understand it here,
and not stochastic complexity as in Refs. [28,29,3]. Ref. [30] provides detailed mathematical proofs concerning asymptotic
properties and a general theoretical bound, through the introduction of an index of resolvability, for the statistical accuracy
and efficacy of probability density estimation by any type of estimators, not necessarily histograms. Further refinements and
improvements on these theoretical properties are given in Ref. [31]. Two asymptotic theorems are also proved in Ref. [28],
and two theorems concerning upper bounds are established in Ref. [29]. Ref. [32] confronts, for histogramestimation, several
forms of penalized maximum-likelihood methods that include the MDL and stochastic complexity based approaches of
Ref. [28]. Refs. [33,34] present another formofMDL for histogramdensity estimation, as they define stochastic complexity by
means of the notion of normalizedmaximum likelihood to avoid a specific prior and in order to obtain aminimax optimality,
and then complement this stochastic complexity by a measure of the description length of the parameters to form the
criterion to be minimized. In our present paper, for probability density estimation by histograms, we concentrate on the
minimum description length, as in Ref. [28] and Ref. [30], and not on the minimum stochastic complexity as considered in
Refs. [28,29] with uniform prior, or in Ref. [3] with Jeffreys’ prior, or in Refs. [33,34] via normalizedmaximum likelihood.We
see this minimum description length endowed with the advantage of a simple and concrete informational interpretation
which is not shared by the minimum stochastic complexity. We review, illustrate and complement the MDL approach
here. So far, MDL for probability density estimation by histograms has mainly been discussed in the literature connected
to information theory and statistics. Formal proofs have been established for important mathematical properties of the
approach. As a complement, we propose here to discuss the MDL methodology in a more physically-oriented presentation,
leaning on concrete intuition and illustrative examples. Such a relation between information theory and statistical physics
seems interesting to us to promote for the potentialities of mutual enrichment, as for instance illustrated by the recent
studies of Refs. [35–38].

2. A histogrammodel for probability density

One disposes of N observed data points xn forming the data set
x = {xn, n = 1, . . .N}. (1)

These N data points xn are assumed to be N independent realizations of a random variable X distributed according to the
probability density function f (x). The probability P(x) of observing a given data set x is therefore expressible as

P(x) = dxN
N∏
n=1

f (xn), (2)

where dxmeasures the infinitesimal domain of reference around xn.
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