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a b s t r a c t

This series of two articles aims at dissipating the rather dense haze existing in the present
literature around the General Relativistic Boltzmann equation. In this first article, the
general relativistic one-particle distribution function in phase space is defined as an
average of delta functions. Thereupon, the general relativistic Boltzmann equation, to be
obeyed by this function, is derived. The use of either contravariant or covariant momenta
leads to different, but equivalent, forms of the equation.
The results of the present article are covariant, but not manifestly covariant. The

transition to a manifestly covariant treatment, on the basis of off-shell momenta, is given
in the second article.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Non-equilibrium systems are systems in which some kind of transport takes place, that is, transfer of energy, mass, or
any other particle property, from one place in a system to another.
Central in the theoretical description of dilute non-equilibrium systems stands the so-called one-particle distribution

function, usually denoted by the symbol f . Allmacroscopic properties of a dilute non-equilibriumsystem, such as its pressure,
its energy density, its temperature, its electrical conductivity, its viscosity, etc., can be expressed in terms of this function
f . The function f , in turn, can be determined by solving an equation — often called a transport equation— that describes the
behavior of the non-equilibrium system.
The most famous of these equations is the non-relativistic equation derived by Ludwig Boltzmann at the end of the 19th

century. In the forties, Lichnerowich andMarrot generalized this equation to the realm of special relativity [1]. Israel [2] was
one of the first to calculate relativistic transport coefficients on the basis this equation. He also was one of the first authors
that wrote down a general relativistic version of the Boltzmann-equation [3]. It is the aim of this article to transfer the special
relativistic Boltzmann theory to the realm of general relativity. To that end, both the definition of f and the equation for f
have to be generalized.
The existing literature on the Boltzmann-equations usually starts directly frommanifestly covariant equations [3–5]. This

makes it difficult to see what is actually happening: the steps of the derivation are obscured by the manifestly covariant
formalism. Therefore, we opted for an approach which is covariant but not manifestly covariant. We will perform the
transition to manifestly covariant equations in a the sequel to the present article [6].
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The material is organized as follows:
Section 2 reviews the non-relativistic and special relativistic distribution functions fnr and fsr . In general relativity, it is

not clear, a priori, whether one should use the contravariant momentum pi or the contravariant momentum pi as a variable
in the distribution function. We therefore define two distribution functions, one in the seven dimensional (t, xi, pi)-space,
and one in the seven dimensional (t, xi, pi)-space. We call them f and f∗, respectively. Both f , given by Eq. (27), and f∗, given
by Eq. (4), are proven to be general relativistic scalars. Although the choices for f or for f∗ are physically totally equivalent,
the two sets of equations they lead to are sufficiently different to make mandatory a separate and full treatment for each
choice. It turns out, however, that a treatment around f∗ is substantially simpler, and, therefore, highly preferable.
In Section 3, the general relativistic counterparts of the Boltzmann equation, to be obeyed by the two afore-defined

distribution functions f and f∗, are derived. For simplicity’s sake, we only deal with non-quantal particles, and do not discuss
Bose–Einstein or Fermi–Dirac statistics. The final equations for f and f∗ are (55) and (80), respectively.
The present article is concerned with equations which are covariant, but not always manifestly covariant. In the next

article, we will reformulate our results in amanifestly covariant way.
In themain text, one needs two-, three- and four-dimensional surface and volume elements in spacetime andmomentum

space. These volume elements are defined and related to one another in Appendix A. Appendix B recalls Stokes’s theorem,
while Appendix C is devoted to induced metrics. The Appendices A–C have a pedagogical character.
An explicit proof of the scalar character of f∗(t, xi, pi) has been given in Section 2.3. The corresponding explicit proof of

the scalar character of f (t, xi, pi) is given in Appendix D.
We use a metric with signature−2.

2. One-particle distribution function

In this section we will be concerned with a general relativistic generalization of the special relativistic one-particle
position–momentum distribution function, fsr(t, xi, pi), (i = 1, 2, 3). It will turn out that in general relativity there are
two possible generalizations, which we will denote f (t, xi, pi) and f∗(t, xi, pi), both of which are general relativistic scalars.
Here and elsewhere, a lower asterisk at some quantity indicates that covariant momentum components (like pi or qi) are

used as variables rather than contravariant ones (like pi or qi).
At the one hand, the distribution function f (t, xi, pi) depends on variables that are directly measurable, just as in special

relativity, namely the time–position (t, xi) and the contravariant momentum pi. In general relativity, however, this choice
of variables leads to a quite intricate, and, hence, undesirable definition of f , namely the definition (27). It contains, next to
the usual Dirac delta-functions in position and three-momentum space, factors containing the energy and the determinant
of the metric.
The distribution function f∗(t, xi, pi), on the other hand, contains covariant momentum variables, variables that depend

on the metric via pi = giµ(t, xi)pµ (µ = 0, 1, 2, 3), which, therefore, are not directly measurable. However, the definition of
the distribution function f∗(t, xi, pi) in terms of Dirac delta-functions, given in Eq. (4), is simpler than the corresponding
definition (27) for f (t, xi, pi). Now, there are no extra factors like the energy or the determinant of the metric. As a
consequence, the Boltzmann equation (80) for f∗ takes a simpler form than the Boltzmann equation (55) for f .
All this entails the question: which one to choose? Since both seem have their intrinsic advantages, we treat both f and

f∗ and derive the Boltzmann-equations they should obey. As a running start, we take the non-relativistic and the special
relativistic distribution functions, fnr and fsr , respectively.

2.1. Non-relativistic distribution function

Let us start by recalling the classical, non-relativistic definition of the one-particle position–momentum distribution
function fnr(t, xi, pi). It is a function of the time t , a position vector xi ≡ (x1, x2, x3) and amomentumvector pi ≡ (p1, p2, p3).
By definition, the combination fnr(t, xi, pi)∆3x∆3p yields the average number of particles which, in a non-equilibrium fluid
characterized by a certain set of macroscopic variables, will be found in a small but finite volume element ∆3x around the
point xi with momenta in a small but finite volume element∆3p around pi. The spatial volume elements∆3x are supposed
to be large enough to contain many particles, but small enough in order to make it possible to treat the distribution function
as a constant all over these volume-elements.
Consider a large, macroscopic system of identical particles numbered r = 1, 2, 3, . . .. Let xir(t) describe the trajectory of

the r-th particle of the system. Let pir(t) be themomentum of the r-the particle at time t . Now, let us consider the expression∑
r

δ(3)(xi − xir(t))δ
(3)(pi − pir(t)) (1)

where the symbol δ(3) denotes a three-dimensional Dirac distribution, i.e., a product of three Dirac delta-functions, each of
which contains a component of the vector xi or pi (i = 1, 2, 3). Integration of this expression with respect to the space and
momentum volumes∆3x and∆3p yields the number of particles which, at time t , are foundwithin the volume element∆3x
around the point xi with momenta within the volume element∆3p around the point pi. Hence, the expression (1) gives the
particle density in (xi, pi)-space.
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