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h i g h l i g h t s

• Stability of platoon with limits on acceleration determined.
• Small-deviation string stability insufficient to avoid collisions.
• No vehicle exceeds limits if lead vehicle remains within limits.
• Initial equilibrium state with proper control law parameters required.
• Optimal acceleration feedback gain varies with engine speed.
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a b s t r a c t

The stability of autonomous vehicle platoonswith limits on acceleration and deceleration is
determined. If the leading-vehicle acceleration remainswithin the limits, all vehicles in the
platoon remainwithin the limits when the relative-velocity feedback coefficient is equal to
the headway time constant [k = 1/h]. Furthermore, if the sensitivityα > 1/h, no collisions
occur. String stability for small perturbations is assumed and the initial condition is taken
as the equilibrium state. Other values of k and α that give stability with no collisions are
found from simulations. For vehicleswith non-negligiblemechanical response, simulations
indicate that the acceleration-feedback-control gainmight have to be dynamically adjusted
to obtain optimal performance as the response time changes with engine speed. Stability is
demonstrated for some perturbations that cause initial acceleration or deceleration greater
than the limits, yet do not cause collisions.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Autonomous vehicles or adaptive cruise control (ACC) vehicles could be a significant factor in future transportation
systems. Various authors have shown that if ∼30% of vehicles had ACC, the formation of jams in heavy traffic could be
eliminated [1–10]. The ACC vehicles are assumed to be governed by control parameters that give string stability [11].

As the literature on string stability is large, no attempt to summarize all the papers will be given here. The reader is
referred to several good references on traffic and ACC [12–16]. However, I will describe the salient developments as they
relate to the present work. The first is the constant headway time policy that requires the control system to maintain the
headway between two vehicles as hv, where h is the headway time constant (also known as the time gap, which refers to
bumper-to-bumper gap) and v is the velocity [17–19].
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The control algorithm for a vehicle’s acceleration is (assuming instantaneous mechanical response) a =
α
h (1x − D −

hv) + k1v, where α is the sensitivity, k is the gain for relative velocity feedback control, D is the length of the vehicle plus
a safety margin, 1x is the center-to-center distance between vehicles, and 1v is relative velocity d1x

dt [20]. Liang and Peng
showed that string stability is attained if α + 2k > 2

h [11].
If themechanical response of the vehicle is characterized by a first-order time constant τ , themaximumallowed τ occurs

when k =
1
h independent of α and is given by τmax =

h
2 [20]. String stability has also been analyzed for an explicit delay

time td by Orosz, Moehlis and Bullo [21] as well as for more general mechanical responses [22,23]. To date, however, the
effects of comfortable limits on acceleration and deceleration have not been examined in depth. The purpose of this paper
is to examine platoon stability with such limits.

The only comparable model that has maximum acceleration and deceleration is the Intelligent Driver Model (IDM),
which can be used as a type of ACC model [24]. The effects of mechanical response are not included in the IDM and the
maximum deceleration possible implies that brakes are activated. The time delay for effective brake activation, which can
be an important factor, is not included in the model or in the present analysis.

The paper is organized as follows. Section 2 is about a simple model for which an analytic result is proven. Section 3
contains simulations illustrating the results of Section 2. Section 4 is devoted to avoiding collisions that the limits might
cause. Section 5 reports simulations for the more general model where mechanical response is included. Section 6 pertains
to non-equilibrium initial states that result in acceleration beyond the limits, yet cause no collisions. Conclusions are drawn
in Section 7.

2. Simple model

In this section I consider a simple model that illustrates the consequences of imposing limits on the acceleration on an
otherwise string-stable platoon. For simplicity, I take τ = td = 0 (instantaneousmechanical response) and let themaximum
acceleration and deceleration be amax. The maximum deceleration comes from the powertrain when the power is reduced
rather than frombraking. (Otherwise a braking algorithm treating the dynamics of activationmust be included in themodel.)
All vehicles are taken to be identical and are labeled by n = 1, 2 . . . with n = 1 being the first vehicle of the platoon. (I take
n = 0 to be the leading vehicle whose velocity profile is to be specified.) The equation of motion for vehicle n is therefore

an(t) = An(t), |An(t)| < amax, (2.1a)
= amax sgn [An(t)] , otherwise, (2.1b)

with

An(t) = α

Vop (xn−1(t) − xn(t) − D) − vn(t)


+ k [vn−1(t) − vn(t)] , (2.2)

where

Vop(z) = vmax, z ≥ hvmax, (2.3a)

=
z
h
, 0 < z < hvmax, (2.3b)

= 0, z ≤ 0. (2.3c)

The unconstrained acceleration is An(t) and Vop(z) is the optimal velocity which is limited by a maximum velocity (e.g., the
speed limit) vmax. Without the constraints on acceleration, the model is the same as the full velocity difference model of
Ref. [25].

Next I calculate the acceleration of vehicle nwhen vehicle n−1 does not exceed the limits on acceleration. For simplicity
I take k =

1
h . At time t = 0 the system is in equilibrium. So for n = 1, 2 . . .

vn(0) = vn−1(0), (2.4a)

xn−1(0) − xn(0) − D = hvn(0). (2.4b)

Assume that

− amax ≤ an−1(t) ≤ amax. (2.5)

Because the system is initially in equilibrium and an(0) = 0, the equation of motion is (assuming all velocities are positive,
but less than vmax)

ẍn +


α +

1
h


ẋn +

α

h
xn =

α

h


xn−1 − D +

1
α

vn−1


. (2.6)

Eq. (2.6) remains valid until |an(t)| exceeds amax (if it ever does).
Let

yn = ẋn + αxn, (2.7)
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