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h i g h l i g h t s

• Fractional calculus is applied to the diffusion and the diffusion–advection equation.
• The Caputo–Fabrizio fractional derivative is applied.
• The generalization of the equations in space–time exhibits anomalous behavior.
• To keep the dimensionality an auxiliary parameter σ is introduced.
• The numerical solutions are obtained using the numerical Laplace transform algorithm.
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a b s t r a c t

In this paperwe present an alternative representation of the diffusion equation and the dif-
fusion–advection equation using the fractional calculus approach, the spatial-time deriva-
tives are approximated using the fractional definition recently introduced by Caputo and
Fabrizio in the range β, γ ∈ (0; 2] for the space and time domain respectively. In this rep-
resentation two auxiliary parameters σx and σt are introduced, these parameters related to
equation results in a fractal space–time geometry provide an entire new family of solutions
for the diffusion processes. The numerical results showed different behaviors when com-
pared with classical model solutions. In the range β, γ ∈ (0; 1), the concentration exhibits
the non-Markovian Lévy flights and the subdiffusion phenomena; when β = γ = 1 the
classical case is recovered; when β, γ ∈ (1; 2] the concentration exhibits the Markovian
Lévy flights and the superdiffusion phenomena; finallywhenβ = γ = 2 the concentration
is anomalous dispersive and we found ballistic diffusion.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Fractional Calculus (FC) generalizes the concept of a derivative operator of integer order to a derivative operator of ar-
bitrary order (real or complex), this mathematical formulation was developed by Fourier, Liouville, Abel, Riemann, Lacroix,
Grünwald, Riesz, among many others [1–3]. The dynamical systems of fractional order are non-conservative and involve
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non-local operators which yield new information about their behavior, many problems in physical science, electromag-
netism, electrochemistry, diffusion and general transport theory can be solved by the fractional calculus approach [4–17].
It has been demonstrated that the fractional order modeling is particularly useful to represent systems where the memory
plays a significant role, this quality is the most significant advantage [18–20]. Diffusive transport can be seen as the average
of the randommotions of a huge number of individual molecules in a system. Diffusive transport has a number of important
implications in the nature. If we consider the case of one-dimensional diffusion, a concentration gradient produces a net
transport in one direction, and the rate of transport is directly proportional to the magnitude of this gradient, the Diffusion
Equation (DE) is the governing equation of this process [20]. The advection is a transport mechanism of a substance due to
the fluid’s bulk motion. The Diffusion–Advection Equation (DAE) describes the tendency of the particles to be moved along
by the fluid (the convective terms arise when changing from Lagrangian to Eulerian frames) and the diffusion refers to the
dissipation/loss of a particle’s property (such as momentum) due to internal frictional forces characterized, in this equa-
tion by the concentration-dependent diffusion coefficient [21]. In this context the DE, DAE and Fokker–Planck equation in
space–timewere suggested based on local FC theory [22–31]. These representations arise in continuous-time randomwalks.
A random walk is a mathematical formalization of a path that consists of a succession of random steps. Random walks are
related to the diffusion models and within the fractional approach it is possible to include external fields and transport in
the phase space within the same approach [22]. A Lévy flight, also referred as Lévy motion, is a random walk in which the
step-lengths have a heavy-tailed probability distribution. In a dimension greater than one, the steps are defined in terms
of a probability distribution [23]. Mainardi in Ref. [24] presented the interpretation of the corresponding Green function as
a probability density for the particular cases of space-fractional, time-fractional and neutral-fractional diffusion, the fun-
damental equation was obtained from the conventional diffusion equation by replacing the second-order space derivative
with a Riesz–Feller derivative and the first-order time derivative with a Caputo derivative. Gorenflo reported in Ref. [25]
the time fractional diffusion equation obtained from a fractional Fick law, the fundamental solution was interpreted as a
probability density of a non-Markovian stochastic process and was related to a phenomenon of slow anomalous diffusion.
In recent papers of Luchko [26–28], the generalized time-fractional diffusion equation with variable coefficients was con-
sidered. The author showed the existence and uniqueness of the solution for the initial boundary value problem of the
generalized time-fractional diffusion equation; the Fourier method was used to construct a formal solution. Liu [30] used
the Riemann–Liouville and Grünwald–Letnikov definitions of fractional derivatives to analyze the Fokker–Planck equation,
the equation was transformed into a system of ordinary differential equations that presented numerical results of the space
Fokker–Planck equation; in the work [31] the authors proposed an alternative construction for the space–time fractional
DAE considered derivatives of Caputo type of order β, γ ∈ (0, 1], the results revealed Lévy flights (non-Markovian version)
and the phenomena of subdiffusion. Other applications of FC for modeling diffusive transport are given in Refs. [32–41].

The Riemann–Liouville definition entails physically unacceptable initial conditions (fractional order initial condi-
tions) [42]; conversely for the Caputo representation, the initial conditions are expressed in terms of integer-order deriva-
tives having direct physical significance [43], these definitions have the disadvantage that their kernel had singularity, this
kernel includes memory effects and therefore both definitions cannot accurately describe the full effect of the memory. Due
to this inconvenience, Michele Caputo andMauro Fabrizio in Ref. [44] present a new definition of fractional derivative with-
out singular kernel, the Caputo–Fabrizio (CF) fractional derivative, this derivative possesses very interesting properties, for
instance, the possibility to describe fluctuations and structures with different scales. Furthermore, this definition allows for
the description of mechanical properties related with damage, fatigue, material heterogeneities and structures at different
scales. Properties and applications of this new fractional derivative are reviewed in detail in the papers [45–48].

The aim of this work is developed a new representation of the fractional DE andDAE applying the CF fractional derivative,
the order of the derivative being considered is β, γ ∈ (0; 2] for space–time domain respectively, we employ the idea
suggested in Refs. [4,5] to construct dimensional correct fractional differential equations, this alternative representation
preserves the physical dimensionality of the equation for any value taken by the exponent of the fractional derivative.

The paper is organized as follows. In the next section, we recall the CF fractional derivative. In Section 3, the alternative
representation of the fractional DAE and DE is performed. Finally, some concluding remarks are drawn in Section 5.

2. Basic tools

The CF definition of fractional derivative is based on the convolution of a first order derivative and the exponential
function, the CF fractional derivative of order γ ∈ [0; 1] is defined as follows [44,45]
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t is a CF derivative with respect to t , M(γ ) is a normalization function such that M(0) = M(1) = 1, in

this fractional derivative the exponential function helps to reduce the risk of singularity, furthermore, the derivative of a
constant is equal to zero and the kernel does not have singularity for t = α.

If n ≥ 1 and γ ∈ [0, 1], the CF fractional derivative, CF0 D
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