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a b s t r a c t

The framework of non-extensive statistical mechanics, proposed by Tsallis, has been
used to describe a variety of systems. The non-extensive statistical mechanics is usually
introduced in a formalway, using themaximization of entropy. In this paperwe investigate
the canonical ensemble in the non-extensive statistical mechanics using amore traditional
way, by considering a small system interactingwith a large reservoir via short-range forces.
The reservoir is characterized by generalized entropy instead of the Boltzmann–Gibbs
entropy. Assuming equal probabilities for all available microstates we derive the equations
of the non-extensive statistical mechanics. Such a procedure can provide deeper insight
into applicability of the non-extensive statistics.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Complexity in natural or artificial systemsmay be caused by long-range interactions, long-rangememory, non-ergodicity
or multifractality. Such systems have exotic thermodynamical properties and are unusual from the point of view of
traditional Boltzmann–Gibbs statistical mechanics. Statistical description of complex systems can be provided using the
non-extensive statistical mechanics that generalizes the Boltzmann–Gibbs statistics [1–3]. The non-extensive statistical
mechanics has been used to describe phenomena in high-energy physics [4], spin-glasses [5], cold atoms in optical
lattices [6], trapped ions [7], anomalous diffusion [8,9], dusty plasmas [10], low-dimensional dissipative and conservative
maps in the dynamical systems [11–13], turbulent flows [14], and Langevin dynamics with fluctuating temperature [15,16].
Concepts related to the non-extensive statistical mechanics have found applications not only in physics but in chemistry,
biology, mathematics, economics, and informatics as well [17–19].

The basis of the non-extensive statistical mechanics is the generalized entropy [1]

Sq = kB

1 −

µ

p(µ)q

q − 1
, (1)

where p(µ) is the probability of finding the system in the state characterized by the parametersµ; the parameter q describes
the non-extensiveness of the system. More generalized entropies and distribution functions are introduced in Refs. [20,21].
The generalized entropy (1) can be written in a form similar to the Boltzmann–Gibbs entropy

SBG = −kB

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as an average of q-logarithm [1]:
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, (3)
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where the q-logarithm is defined as

lnq x =
x1−q

− 1
1 − q

. (4)

In the limit q → 1 the q-logarithm becomes an ordinary logarithm, thus the Boltzmann–Gibbs entropy can be obtained
from Eq. (1) in the limit q → 1 [1,2]. The inverse function of the q-logarithm is the q-exponential function

expq(x) ≡ [1 + (1 − q)x]
1

1−q
+ , (5)

with [x]+ = x if x > 0, and [x]+ = 0 otherwise. The q-exponential and q-logarithm appear in many equations of non-
extensive statistical mechanics [1]. Some properties of q-exponential and q-logarithm are presented in Appendix B.

The equilibrium of an isolated system consisting of N particles and having the Hamiltonian H is described by the
microcanonical ensemble. In the statistical physics it is assumed that the equilibrium in the microcanonical ensemble
corresponds to equally probablemicrostates [22,23], therefore in themicrocanonical ensemble the probability ofmicrostate
µ is p(µ) = 1/W , where W is the number of microstates. The microstates are constrained to a shell defined by the
macrovariables such as energy of the system and number of particles. Usually the number of microstates W grows
exponentially with the particle number N . However, in the systems described by the non-extensive statistical mechanics,
for example in the systems with long-range interactions or long-range correlations, the dependence of the number of
microstates on the particle number N is different from exponential [1]. In particular, the number of microstates can grow
slower than exponential, as a power-law of N . This difference of the dependence on N can arise due to non-ergodicity of the
systems, when not all available microstates can be reached. In this caseW is the effective number of reachable microstates.
When probabilities are equal, Eq. (1) for the generalized entropy takes the simpler form

Sq = kB lnq W . (6)

For the systemswhere the effective number ofmicrostatesW grows as a power-lawof thenumber of particlesN the standard
Boltzmann–Gibbs entropy (2) is not proportional to the number of particles in the system and thus is not extensive. The
extensive quantity is the generalized entropy (1) for some value of q ≠ 1. In general, if the entropy Sq is proportional to the
number of particles N then the number of microstatesW grows asW ∼ expq N . There are two different cases: (i) q < 1 and
W ∼ N1/(1−q). The number of microstates grows as a power-law. (ii) q > 1 andW behaves as (1−(q−1)AN)−1/(q−1). In this
case there is a maximum value of the number of particles Ncrit where the number of microstates becomes infinite and thus
themacroscopic limitN → ∞ cannot be taken. Because this complication occurswhen q > 1, in this paperwe consider only
the case of q < 1; the value of q in all the equations below should be assumed to be less than 1. Note, that the q-exponential
distribution is compatible with classical Hamiltonian systems in the thermodynamic limit only when 0 6 q 6 1 [24]. The
case of q > 1 warrants a separate investigation and is outside of the scope of the present paper.

The canonical ensemble in the non-extensive statisticalmechanics is usually introduced in a formalway, starting from the
maximization of the generalized entropy [1]. The physical assumptions appear in themaximization procedure in the form of
constraints. However, the q-averages used for constraints are unusual from the point of view of ordinary, Boltzmann–Gibbs
statistics. The physical justification of q-averages and escort distributions is not completely clear. Thus a more physically
transparent method would be useful for understanding the non-extensive statistical mechanics. The goal of this paper is to
investigate the canonical ensemble in the non-extensive statistical mechanics using a more traditional way, by considering
a small system interacting with a large reservoir via short-range forces. Consistent investigation of such a situation has not
been performed yet. We assume that the generalized entropy (1) for some value of q < 1 instead of the Boltzmann–Gibbs
entropy is extensive for the reservoir. In addition, as in the standard statistical mechanics we assume equal probabilities for
all available microstates of the combined system consisting of the small system and the reservoir. By doing so we can avoid
the critique of the generalized entropy presented in Refs. [25,26].

In the ordinary statistical mechanics a small subsystem of a large system in the microcanonical ensemble is described by
the canonical ensemble. The rest of the system serves as a heat reservoir that defines a temperature for the part on which
we focus our attention [22]. It is assumed that the description of a subsystem by the canonical ensemble is valid also in the
non-extensive statistical mechanics [1]. However, the systems considered in the non-extensive statistical mechanics can
have long-range interactions and long-range correlations. In this paper we are investigating a small system interacting with
a large system via short-range forces, therefore, our approach is not directly applicable to a subsystem of a large systemwith
long-range interactions. We are considering instead a heterogeneous situation when a small system is interacting with the
reservoir via different forces than the subsystems of the reservoir.

The paper is organized as follows: To make the comparison of the non-extensive statistical mechanics with the standard
Boltzmann–Gibbs statistical mechanics easier, in Section 2 we briefly present the usual construction of the canonical
ensemble in the standard statistical mechanics. In Section 3 we consider the canonical ensemble in the non-extensive
statistical mechanics describing a small system interacting with a large reservoir via short-range forces and in Section 4
we explore the resulting Legendre transformation structure. Section 5 summarizes our findings.
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