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h i g h l i g h t s

• We solve the fractional diffusion–advection equation for solar cosmic-ray transport.
• We give its general solution.
• A numerical analysis of this equation is made.
• We use hypergeometric distributions.
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a b s t r a c t

In this effort we exactly solve the fractional diffusion–advection equation for solar cosmic-
ray transport and give its general solution in terms of hypergeometric distributions.
Numerical analysis of this equation shows that its solutions resemble power-laws.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

There is a considerable body of evidence, from data collected by spacecrafts like Ulysses and Voyager 2, indicating that
the transport of energetic particles in the turbulent heliospheric medium is superdiffusive [1,2]. Considerable effort has
been devoted in recent years to the development of superdiffusive models for the transport of electrons and protons in
the heliosphere [3–5]. This kind of transport regime exhibits a power-law growth of the mean square displacement of the
diffusing particles, ⟨1x2⟩ ∝ tα , with α > 1 (see, for instance, Ref. [6]). The special case α = 2 is called ballistic transport.
The limit case α → 1 corresponds to normal diffusion, described by the well-known Gaussian propagator. The energetic
particles detected by the aforementioned probes are usually associated with violent solar events like solar flares. These
particles diffuse in the solar wind, which is a turbulent environment than can be assumed statistically homogeneous at
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large enough distances from the sun [1]. This implies that the propagator P(x, x′, t, t ′), describing the probability of finding
at the space time location (x, t) a particle that has been injected at (x′, t ′), depends solely on the differences x− x′ and t − t ′.
In the superdiffusive regime the propagator P(x, x′, t, t ′) is not Gaussian, and exhibits power-law tails. It arises as solution
a non local diffusive process governed by an integral equation that can be recast under the guise of a diffusion equation
where the well-known Laplacian term is replaced by a term involving fractional derivatives [7]. Diffusion equations with
fractional derivatives have attracted considerable attention recently (see Refs. [8–12] and references therein) and have lots
of potential applications [13,14]. In particular, the observed distributions of solar cosmic ray particles are often consistent
with power-law tails, suggesting that a superdiffusive process is at work.

A proper understanding of the transport of energetic particles in space is a vital ingredient for the analysis of various
important phenomena, such as the propagation of particles from the Sun to our planet or, more generally, the acceleration
and transport of cosmic rays. The superdiffusion of particles in interplanetary turbulent environments is often modeled
using asymptotic expressions for the pertinent non-Gaussian propagator, which have a limited range of validity. A first step
towards a more accurate analytical treatment of this problem is to consider solutions of a fractional diffusion–advection
equation describing the diffusion of particles emitted at a shock front that propagates at a constant upstream speed Vsh in
the solar wind rest frame. The shock front is assumed to be planar, leading to an effectively one-dimensional problem. Each
physical quantity depends only on the time t and on the spatial coordinate x measured along an axis perpendicular to the
shock front.

There are many ways of evaluating fractional derivatives of either functions or distributions.

(1) Defining the derivative using ultradistributions à la Sebastiao e Silva, as done in Ref. [15].
(2) Using Caputo’s fractional derivatives, Riemann–Liouville ones, etc.

In the present contributionwe re-visit the fractional diffusion–advection equation previously studied in other papers (see
Ref. [15] and references therein).Why? Becausewewere able to give it a simplified treatment, clearly accessible to the entire
scientific community, unlike that of Ref. [15], that appeals to ultradistributions of exponential type, a very sophisticated
topic, accessible only to people familiar with extremely complex mathematics.

2. Formulation of the problem

Consider the equation

∂ f
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+ δ(x), (2.1)

where t > 0 and f (x, t) is the distribution function for solar cosmic-rays transport. Here the fractional spatial derivative is
defined as
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To solve this equation we use the Green function governed by the equation:
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+ δ(x)δ(t). (2.3)

With this Green function, the solution of (2.1) can be expressed as

f (x, t) =

 t

0
G(x + at ′, t ′) dt ′. (2.4)

In this work we obtain the solutions of Eqs. (2.1) and (2.3) using distributions as main tools [16].
For our task we use, as a first step, t the Green function through the use of the Fourier Transform given by
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G(x, t)e−ikx dx, (2.5)

from which we obtain for Ĝ:

Ĝ(k, t) = −κ|k|αĜ(k, t) +
1
2π

δ(t), (2.6)

whose solution is

Ĝ(k, t) =
H(t)
2π

e−κ|k|α t , (2.7)

where H(t) is Heaviside’s step function.
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