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h i g h l i g h t s

• Wemodel two networked groups internally synchronising and externally competing.
• Fixed points describe the two groups phase locked or one group in two fragments.
• We analytically solve for thresholds for loss of synchrony leading to fragmentation.
• We numerically solve for one group on a tree graph and the other on a random graph.
• Numerical and analytical results for thresholds agree across a range of couplings.
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a b s t r a c t

We examine a modification of the Kuramoto model for phase oscillators coupled on a
network. Here, two populations of oscillators are considered, each with different network
topologies, internal and cross-network couplings and frequencies. Additionally, frustration
parameters for the interactions of the cross-network phases are introduced. This may
be regarded as a model of competing populations: internal to any one network phase
synchronisation is a target state, while externally one or both populations seek to frequency
synchronise to a phase in relation to the competitor. We conduct fixed point analyses
for two regimes: one, where internal phase synchronisation occurs for each population
with the potential for instability in the phase of one population in relation to the other;
the second where one part of a population remains fixed in phase in relation to the
other population, but where instability may occur within the first population leading to
‘fragmentation’. We compare analytic results to numerical solutions for the system at
various critical thresholds.

Crown Copyright© 2015 Published by Elsevier B.V. All rights reserved.

1. Introduction

Dynamical processes on networks remain an ongoing area of research across complex systems of vastly different
manifestations: physical, chemical, biological and social/organisational. The Kuramoto model of phase oscillators [1] on
a general network is the most paradigmatic of formulations allowing for a myriad of variations depending on the specific
area of application; for reviews see Refs. [2–5]. Among these, two variations of the Kuramoto model have recently become
of interest in the literature: firstly, themulti-network formulation [6–10], where the entities being modelled on the network
nodes may fall into quite different but nonetheless interacting populations (for example distinct species of organisms) each
with very different network characteristics; and secondly, the frustratedKuramotomodel, where phase shifts are introduced
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in the interaction between adjacent oscillators such that the local interaction is not phase but frequency synchronising
[11–13]. In this paper we consider an intersection of these two variations — a dual-network model, with frustrations
introduced in the cross-network interaction. Our interest in such a model stems from our adaptation of the concept of
adversarial or competitive interaction in social systems where two (or more) populations share a rivalry (for example, firms
for market share [14], political or religious parties for membership [15], or popular opinion [16]). Note that the Kuramoto
model has been adapted to social/human systems for several contexts: rhythmic applause [17], opinion dynamics [18] and
human–robot musical performance [19]. There are also applications of coupled oscillator models on networks in which
clustered populations are of interest, such as in the work of Ref. [20]. Our application of the Kuramoto model is to the
decision-making process because of its essential cyclicity: for example the Perceptual Cycle model of Neisser [21] is based
on a flow of an entity perceiving external data, cognitively processing that data, making decisions about future actions,
and undertaking them thereby depositing new data into the external environment serving as an input into other entities’
process. In this respect then, the frustration in the cross-interaction may represent the aim of one group to be ‘a step ahead’
of the decision-making of competitors. Inspired by this, the variation of the Kuramotomodel we propose, for whichwe solve
for fixed points, is close in spirit to the two network models of Refs. [7–9] which also include frustrations — however we
consider finite general networks as opposed to a coupling of two complete graphs.

For a general unweighted undirected network described by an adjacency matrix A, the Kuramoto model is expressed by
the coupled differential equations:

θ̇i = ωi + σ

N
j=1

Aij sin(θj − θi), 1 ≤ i ≤ N (1)

where θi is the phase angle for node i, ωi is an intrinsic frequency associated with the node, and σ a coupling constant. The
basic behaviour of this system has been well explored: for sufficiently high coupling, all phases may eventually synchronise
and approximately phase lock: θi ≈ θj ∀i, j (there are exceptions though, see Ref. [22]).

For two-network systems the equations are doubled and an additional cross network interaction is introduced. Each
network represents a distinct population, collection or organisation of entities described by the phase at the node. To
distinguish between the two competing populations we shall refer to them (based on competitive decision making
approaches) respectively as ‘Blue’ and ‘Red’, and the entities at nodes of the respective networks as agents. Analysing such
a model for fixed points, Lyapunov stability/instability and chaos allows us to pose questions such as: How should agents
be linked to each other? How quickly should linked agents respond to each other compared to responsiveness to changes in
their specific competitor? Howmuch diversity in frequency can be afforded by any one population in light of its competitive
interactions?Andhowcan the aim for internal phase synchronisation be balanced against that for frequency synchronisation
(being ‘ahead’) of the competitor. We show how the model can be unpacked to answer such questions.

While there are analogues of our approach in network control theorywith amaster network controlling another network,
also known as ‘outer synchronisation’ [23], in our case the two networks stand in a symmetric relationship to each other —
each may be seen as seeking to control the other. A plot of individual θi as functions of time illustrates our focus. In Fig. 1
we show blue and red θi which represent our two types of entities. Different networks connect blue and red internally,
with a whole other network for blue to red; different couplings apply for entities of the same group or between the groups.
The details behind this example are not important. But we observe that most blue entities are locked slightly ahead of the
majority of the red population, while two blue entities are detaching from and then reconnecting with their groups. When
lines diverge they reach 2π difference from each other, namely they rejoin on the other side of the unit circle, and another
two red entities completely detach from their group, rejoin, and so on.

It is important to note that our intent is not to seek prediction of how such network connected entities behave in general
for low couplings. Such a regime would undermine control. We seek, rather, to determine thresholds before ‘control’ is lost,
so that one population may achieve internal phase synchronisation and external frequency synchronisation with respect to
their competitor — such as the main blue population in Fig. 1. Within this we seek conditions such that the threshold for
the type of fragmentation seen in the low-running red entities in Fig. 1 may be avoided. We derive such thresholds from
linearisation and classical fixed point conditions. Such thresholds may be seen as bounding a ‘strategy’ (for example, for
competitive decision making) for one population in relation to the other.

In the next section we detail the model and then analyse its behaviour close to fixed points for the two populations
locking internally and then for one population fragmenting into two parts. We then illustrate our results with numerical
examples. The paper concludes with a summary and future directions of the work.

2. The frustrated two-network model: ‘Blue vs Red’

Consider N Blue agents in an internally connected network given by an adjacency matrix Bij, (i, j = 1, . . . ,N ∈ B), and
M Red agents connected in a network given by the adjacency matrix Rij, (i, j = N + 1, . . . ,N + M ∈ R), namely matrices
with entries one if i and j are connected by a link and zero otherwise. Associated with each Blue agent i ∈ B, is a phase βi
giving the position in a limit cycle; similarly ρi is the position in the limit cycle of a Red agent i ∈ R. The ‘Blue vs Redmodel’
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