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h i g h l i g h t s

• An Ohm’s law analogy for effective diffusivity in composite media is studied.
• Particles are seen as charges moving in an electrical resistance arrangement.
• Good agreement with Brownian particle simulations was found.
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a b s t r a c t

The aim of this work is to obtain an equation for the effective diffusivity of permeable
composite media based on an analogy with Ohm’s law of electricity. Here, particles are
transported across a composite medium, which is seen as an arrangement of series and
parallel resistances. Comparison with simulations of Brownian particles traveling through
the successive walls of the medium showed good agreement for moderate inclusion-to-
continuous medium diffusivity ratio.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Diffusion transport in inhomogeneous medium composed of different materials is found in a large diversity of
applications, including biological tissues, filtration, oil recovery, chromatography, composite materials, etc. Commonly, the
inhomogeneous material is composed of a continuous phase and inclusions of other materials that can be or not permeable
to the transport of particles. Macroscopically, the diffusion transport can be described by a linear relationship between
the macroscopic flux J and the average density gradient ∇ρ; namely, J = −Deff ∇ρ, where Deff is the effective (i.e., average)
diffusivity of themedium. In general terms, the determination of the effective diffusivity requires knowledge of the interface
geometry and the physical properties of the individual phases. It should be commented that a similar problem can be
obtained in the description of other transport coefficients in a diversity of two-phase systems, like electrical conductivity [1],
thermal conductivity [2], magnetic permeability [3], elastic modules [4], etc.

The prediction of the effective diffusivity of composite media where all phases are permeable to diffusion transport has
a long history, starting with Maxwell-Garnett results [5]. For a composite medium with diffusivity DI for inclusions and
diffusivity DC for the continuous medium, the Maxwell-Garnett expression for the effective diffusivity is given by

Deff

DC
= 1 +

d(DI − DC )φI

DI + (d − 1)DC − (DI − DC )φI
(1)
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where φI is the inclusion volume fraction and d is the space dimension (either d = 2 or d = 3). Kalnin et al. [6,7] developed
generalizations of the Maxwell-Garnet equation by considering the partial trapping of diffusing particles by an inclusion as
well as the effects of energy barriers for the particle penetration in an inclusion:

Deff

DC
=

1
1 − φI + kφI


1 +

d(DIk − DC )φI

DIk + (d − 1)DC − (DIk − DC )φI


(2)

where k is a correction to the Maxwell-Garnet equation in order to account for a jump in concentration on the inclusion-
continuous matrix boundary. It was shown that this correction factor can be taken as the density ratio k = ρI/ρC , where
ρI and ρC are average particle densities (i.e., concentrations) in the inclusions and the continuous matrix, respectively. The
main drawback of the Kalnin’s correction given by Eq. (2) is that the correction factor k is, in general, not known in advance.
If the composite is considered as a serial arrangement of grains and along the direction of the diffusion, it was found that
the effective diffusivity can be expressed [8] as follows:

Deff

DC
=

DIDC

φIDC + φCDI
. (3)

Eq. (3) is quite simple, requiring only individual diffusivities and volume fractions. Hickey et al. [9] derived a mean-field
expression for the effective diffusivity in a two-phasemedium consisting of a hydrogelwith large gel-free solvent inclusions,
in terms of the homogeneous diffusivities in the gel and in the solvent. Upon comparing with exact numerical lattice
calculations, it was found that the proposed expression provided accurate prediction for the effective diffusivity over a wide
range of gel concentration and relative volume fraction of the two phases. Kingsburry and Slater [10] extend the Hickey
et al.’s results by including local interactions between the gel and the analyte, interfacial effects between the main phase
and the inclusions, and a possible incomplete separation between the two phases. Along the same line, Zhang and Liu [11]
included the effect of partitioning between different phases and presented an approach to obtain the equations relating
bulk diffusivity to individual-phase diffusivities in heterogeneousmedia. More recently, Kalnin and Kotomin [12] derived an
expression for the effective diffusivity in one-dimensional discrete lattice model of randomwalks in matrix with inclusions
and unequal hopping lengths. Indeed, the analytical results obtained were in good agreement with computer simulations
of stochastic trajectories.

Brownian particles across a permeable composite medium can be seen as moving in the direction of a density gradient
and constrained by the intrinsic resistance of the medium. Although Brownian particles move in several erratic directions,
the imposition of a gradient at a given direction can provide a relative order to the bundle of trajectories into a composite
medium. In this way, one can establish an analogy with the Ohm’s law for the transport of electrical charges in a resistive
circuit. This analogy is explored in this work to show that the effective diffusivity equation (3) can be derived from an
analogy with the Ohm’s law. Strict simulations of Brownian particles are used to assess the predictability of Eq. (3), finding
good agreement for moderate inclusion-to-continuous medium diffusivity ratio.

2. Effective diffusivity from an analogy based upon Ohm’s law

Consider the diffusion transport through a permeable composite formed of N parallel walls of different diffusivity, as
shown in Fig. 1. For a given external density gradient δρ = ρa − ρb and by imposing continuity of density at interfaces, it
can be shown that the steady-state particle flux, J , across the composite is given by

J =
δρ

RT
(4)

where

RT =

N
i=1

Li
Di

. (5)

Also, Li and Di are the width and the diffusivity of the ith wall. Note that Eq. (1) has the form of Ohm’s law for electron
transport. Here, RT is seen as the total resistance obtained from a series circuit. The effective diffusivity,Deff , of the composite
is obtained by considering the flux J under the same external density gradient δρ = ρa − ρb. That is,

LT
Deff

=

N
i=1

Li
Di

(6)

where LT =
N

i=1 Li. Eq. (3) can be written as

Deff =
1

N
i=1

φi
Di

(7)
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