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h i g h l i g h t s

• An auto-regressive cascade model is considered to study outages in complex networks.
• In a major departure from prior work, phase transition is established theoretically.
• The derived bounds are shown to be close to each other via numerical results.
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a b s t r a c t

A network cascademodel that capturesmany real-life correlated node failures in large net-
works via load redistribution is studied. The considered model is well suited for networks
where physical quantities are transmitted, e.g., studying large scale outages in electrical
power grids, gridlocks in road networks, and connectivity breakdown in communication
networks, etc. For this model, a phase transition is established, i.e., existence of critical
thresholds above or below which a small number of node failures lead to a global cascade
of network failures or not. Theoretical bounds are obtained for the phase transition on the
critical capacity parameter that determines the threshold above and below which cascade
appears or disappears, respectively, that are shown to closely follow numerical simulation
results.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Understanding when small scale node failures/infections lead to global network cascades has been an object of study
for a long time because of its deep ramifications in studying large-scale outages in electrical power networks, influence
propagation in social networks, internet breakdown, viral infections in epidemicmodels, etc. Variousmodels of node failure
propagation have been proposed in the literature, that define a certain load redistribution criteria from the failed to the
non-failed nodes.

For example, Ref. [1] proposed a model for spread of ideas, opinion, technology, where an agent initially in state 0 will
adopt a new idea (state 1) as soon as a fraction of its neighbors who have adopted the new idea exceeds a threshold. This
model was generalized in Refs. [2–4]. Sandpile model is another such example [5–8], where at each time instant, a grain
is added to a randomly chosen node, and a node fails when the number of grain particles on it exceed its capacity and
grain particles of the failed node are equally distributed amongst all its neighbors according to different rules (one each or
all etc.). Another class are the epidemic models (see for example Ref. [1]), where nodes fail or are infected based on some
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probabilistic or deterministic mechanism that depends only on the number of failed/infected neighbors but not the severity
of the infection [9,10].

In Refs. [11,12], an internet congestionmodel was proposed for studying router failure cascades, where load at each node
i is defined to be the number of shortest or most efficient paths between any pair of nodes that pass through i. In the event
of a router breakdown, the set of efficient paths changes, and the load of each node updates appropriately. Thereafter, nodes
with load more than their capacity fail and the process continues. Comprehensive simulation results were also provided for
both synthetic and real-world internet and power grid data. Other related cascade models can be found in Refs. [13–15]

An alternate load redistribution model proposed for studying cascading failures in electrical power networks, road
systems or communication networks is the auto-regressive cascade (ARC) model [16–18]. In ARC model, initially, each
nodes’ load is below its capacity. From an external shock or disturbance, one or more nodes fail, and each failed nodes’
load is randomly distributed to their non-failed neighboring nodes at that time. A new node fails if its updated load is above
its capacity, and the cascade continues. The name ARC model is proposed (by us) because the load update rule is similar to
an auto-regressive process.

One main distinction between the ARC model and the model of Refs. [11,12], is that in Refs. [11,12] a nodes’ failure can
change the load at a non-neighboring node in one step, while in the ARCmodel, load is redistributed to only the neighboring
nodes.

Cascade behavior has been studied for ARC model either via numerical simulations [17], or by making approximations
for a simpler fully connected graph [18]. Simpler ARC models that ignore the topology of the graph have been studied in
Ref. [16], where with each node failure, the load at every other active node is uniformly increased by a constant load, and in
Ref. [19], where each failing node results in the failure of a random number of nodes sampled from a given distribution.

Even though numerical results have been well studied for the above discussed load redistribution models [11,12,16–18],
theoretical progress has been very limited, and it still remains open to find the minimum capacity needed at each node so
that large scale cascades do not happen starting from one or few nodes. Theoretical results on establishing phase transition
for other discussed load redistribution models if at all has been possible by assuming the network to be a random graph,
random tree, or deterministic tree, etc.

By assuming the network to be a randomgraph, ourmain result is on establishing a phase transition behavior for cascades
in ARC model, by finding lower and upper bounds on the critical capacity of nodes that determines whether the large
scale cascade occurs or not. Our bounds are derived for large random networks that typically have no short cycles or for
random/fixed tree networks. The derived results are crucial for effective network design, since under-capacitated networks
could be prone to frequent widespread breakdowns that can inflict large economical and social cost. The upper and lower
bounds derived for phase transition are derived assuming that the initial loads at all nodes are independent, and all nodes
have identical capacities. The derived bounds depend on the initial distribution of the loads at each node and the network
degree distribution. The bounds are shown to closely follow numerical simulations for different load and network degree
distributions.

In addition to the theoretical results, we also present exhaustive numerical results to find the gap between the derived
lower and upper bounds on the critical capacity threshold. In general, it is not possible to analytically compare our lower
and upper bounds on the critical capacity threshold, but for all of our numerical results the worst gap is shown to be 1.5,
that does not seem to be dependent on the degree of the random tree and the load distribution. Thus, if each nodes capacity
is chosen to be the upper bound on the critical capacity threshold, the system is not over-provisioned while satisfying a
diminishing probability of cascade failure.

The functional importance of our results is that given the network degree distribution and the initial load distribution, we
can give an explicit answer on the required capacity for each node such that large scale cascades do not happen. Typically,
such answers are only computable via numerical simulations that are time consuming and only give expected values of
the required threshold. Our results give design directions for capacity provisioning to make networks robust to large scale
failures starting with a small number of node failures.

2. Load redistribution model—ARC process

A network is modeled by a random graph Gwith specified degree distribution {wk, k ≥ 0}. Although random graphs are
only an abstraction, they have been widely used as first approximations [1]. Moreover, it is useful to make this assumption
to derive explicit threshold bounds for cascades. We assume that the graph is locally ‘‘tree-like’’, in that there are no short
cycles, and all vertices have a specified degree distribution. This tree approximation is not valid universally for random
graphs, e.g., in small-world networks. So for analysis, we consider that G is a random tree. Similar assumption is made in
Ref. [1] without explicitly stating it.

Each node u ∈ G carries an initial load L(0)
u and has a fixed capacity c . The random variables L(0)

u are assumed to be
independent and identically distributed, denoted generically by L with distribution function F supported on (0, c). Thus, to
begin with, all nodes have loads less than their capacity.

At time t = 0, an external event happens resulting in the failure of a node r (called root hereafter), making L(0)
r > c. If r

is isolated, then the cascade stops. Else, let the number of (random) unfailed neighbors of a failed node be k, i.e., N(r) = k.
Then a pmf with support over k points prui , i = 1 . . . k is randomly chosen, where

k
i=1 prui = 1, and an unfailed neighbor
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