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Anomalous motion generated by the Coulomb friction
in the Langevin equation

A. Mauger1
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Abstract

We study the stability of the Maxwell–Boltzmann (i.e., Gaussian) distribution for the density of states at equilibrium,

against an arbitrary choice of the friction in the Langevin equation. We find that this distribution is Gaussian, if and only if

the friction is Lipschitz continuous. In particular, we argue that the origin of the exponential (instead of Gaussian) velocity

distribution (PDF) of particles when the viscous friction is replaced by the Coulomb friction in the Langevin equation with

white noise is due to the non-Lipschitz continuity of the Coulomb friction, a feature of solid friction. The use of the

Fokker–Planck equation to determine the exponential PDF is justified, since the subset on which the friction is not

continuous is of zero probability ðv ¼ 0Þ. The application to the motion of granular gases is discussed.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The Langevin equation is the simplest stochastic differential equation, and extensively used in the
framework of the Brownian motion which is a paradigm of the statistical physics. In absence of external force,
this equation reduces to a first order stochastic differential equation in the velocity ~v

d~v=dt ¼ ~Fð~vÞ þ ~f 0ðtÞ (1)

with ~Fð~vÞ ¼ �Z~v=m. m is the mass of the particle, the first term in the second member is the viscous friction, Z
is the friction coefficient proportional to the viscosity of the medium in which the particle moves, and f ðtÞ is
the random thermal force which has the usual stochastic properties of being Gaussian with zero mean. In
addition, we are interested here in the case where the noise ~f 0ðtÞ ¼ ~f =m is uncorrelated (white noise), i.e., its
second momentum is a Dirac function

h~f 0i ¼ 0; hf 0aðtÞf
0
bðt
0Þi ¼ 2Dda;bdðt� t0Þ (2)

with D the diffusion coefficient (we shall return to this constant later on).
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In this paper, we address the following question: does this equation restore a Maxwell–Boltzmann
distribution for the probability density of states in the long-time limit where a steady state is reached? The
answer is non-trivial, and we find that it is yes if and only if Fext has the particular property of being Lipschitz
continuous. We also illustrate this purpose on two examples, the Lipschitz continuous case with the viscous
friction, and the non-Lipschitz continuous case with the Coulomb friction.

It has been recently argued that the Coulomb friction is responsible for the fact that the probability density
function (PDF) for the velocity in granular gases is exponential-like instead of Gaussian [1]. This result has
been established on the ground of a simulation of granular particles in a quasi two-dimensional container
under vertical vibration, taking into account the repulsion of the (monodisperse) contacted spheres, the
rotation of the spheres and the Coulomb slip for tangential contact between the (monodisperse and spheric)
particles, and random scatters fixed on the top board. This simulation shows that the Gaussian profile is
restored if and only if the Coulomb forces are suppressed, so that the Coulomb friction is indeed responsible
for the exponential profile in this simulation. The authors then proposed the Langevin equation with Coulomb
friction instead of the viscous friction to describe the motion of this system in the horizontal plane, and the
Fokker–Planck equation in this scheme gives an exponential-like stationary solution for the PDF [1]. On
another hand, further analysis of this Langevin equation has been made [2] to explore the PDF for the
velocity, including an effective gravity along one of the two dimensions. However, The PDF is found to be
negative, at least in the small velocity part of the spectrum, which makes questionable the relevance of this
equation to describe the motion in granular gases. We then found desirable to revisit the solution of the
Langevin equation with the Coulomb friction, and the reasons why, in agreement with Ref. [1], the Coulomb
friction is responsible for the outstanding form of the velocity PDF for the velocity in the horizontal plane for
granular gases. We find that the non-Gaussian nature of the PDF is due to the fact that the Coulomb friction
is ill-defined at v ¼ 0, which is actually the characteristics of solid friction. The limits on the use of this
equation and the associated Fokker–Planck equation to the case of granular gases in a tilted container are
discussed.

2. General case: Lipschitz continuous force

The solution of Eq. (1) is known to exist in the case ~Fð~vÞ is a Lipschitz-continuous function in the whole
velocity space [3]. It means that there must exist a real constant K such that

k~Fð~vÞ � ~Fð~v0ÞkpKk~v� ~v0k (3)

for all~v and ~v0 in the whole range of times investigated. The Green function technique can be used to solve the
problem in this case. Let~vhomðtÞ ¼ ~v0Y ðtÞ be the solution of the homogenous differential equation obtained by
setting ~Fð~vÞ ¼ 0, with ~v0 ¼ ~vðt ¼ 0Þ, meaning Y ðt ¼ 0Þ ¼ 1. Then the causal Green function is ~Gðt; t0Þ ¼
Y ðt� t0Þyðt� t0Þ so that the solution of Eq. (1) is simply

~vðtÞ ¼ ~vhomðtÞ þ

Z t

0

dt0Y ðt� t0Þ~f 0ðt0Þ, (4)

where the integral is defined as the Itô stochastic integral of Y ðtÞ [4]. To be more specific, we can write this
equation

~wðtÞ ¼ ~vðtÞ �~vhomðtÞ ¼ ms- lim
n!1

Xn

i¼1

Y ðti�1Þ½
~f 0ðti�1Þ �

~f 0ðtiÞ�. (5)

The ti’s are a partitioning of the time interval ½0� t� ð0pt1pt2p � � �ptÞ, and ms-lim means the mean square
limit, i.e., the second member converges to the first member in the mean square sense. According to Eq. (5),
~wðtÞ is the sum of an infinite number of independent stochastic vectors. The central limit theorem then tells
that ~wðtÞ has a Gaussian distribution of zero mean. Taking Eq. (2) into account, we readily find that the
second moment is

hwaðtÞwbðtÞi ¼ da;bD0ðtÞ; D0ðtÞ ¼ 2D

Z t

0

dt0Y 2ðt� t0Þ. (6)
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