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a b s t r a c t

In this paper we study the quantum phase transition and low temperature behavior in a
square lattice quantum two-dimensional XY model with single-ion anisotropy and spin
S = 1. Starting with the Villain representation, a Landau–Ginzburg expression is written.
The large D phase is studied using the bond operator formalism.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Although quantum phase transitions (QPT) in low-dimensional magnetic models have been studied extensively [1–5],
some problems still deserve attention. Most of the work done has focused on the zero-temperature properties of the QPT
system. In contrast to the classical critical point where scaling is observed only in a narrow range around the critical point,
the influence of a quantum critical point extends over a wide region at finite temperatures. Here wewill be interested in the
low temperature behavior of the two-dimensional anisotropic quantum XYmodel described by the following Hamiltonian:

H = J
∑
〈n,m〉

(SxnS
x
m + S

y
nS
y
m)+ D

∑
n

(Szn)
2, (1)

where 〈n,m〉 represents the sum over nearest neighbors on the sites, n, of a square lattice and 0 ≤ D < ∞. We consider
the antiferromagnet, since, in general, this is the case of more interest. However, the Hamiltonian (1) is invariant under the
transformation J → −J, k→ k+ π . Due to the form of the single-ion anisotropy we take S > 1/2. We will be particularly
interested in the case S = 1, where we can use the bond operator formalism presented in Section 3. The standard procedure
for treating the XY model, is to start with the Villain representation [6]:

S+n = e
iφn
√
(S + 1/2)2 − (Szn + 1/2)2,

S−n =
√
(S + 1/2)2 − (Szn + 1/2)2e

−iφn , (2)

where φ is the operator corresponding to the azimuthal angle of the spin around the z axis.
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Using the self-consistent harmonic approximation (SCHA) described in [7], we can write the Hamiltonian (1) as

H =
∑
r

[
S̃2ρ
2
(φr − φr+a)

2
+ b(Szr )

2

]
, (3)

where b = 1 + D, S̃2 = S(S + 1), ρ is the stiffness renormalized by thermal and quantum fluctuations, and we have set
J = 1.
As is well known, a Kosterlitz–Thouless phase transition occurs when D is less than a critical value DC , resulting from the

unbinding of vortex–anti-vortex pairs [8]. In this region, the critical behavior of the quantum XYmodel is of the KT-type, as
in the classical case. Quantum fluctuations at finite T can change the quantitative behavior of the model, but the qualitative
picture of the classical system persists [9].
Renormalization group analysis shows that at the Kosterlitz–Thouless transition temperature, TKT, the stiffness exhibits

a universal jump given by 2TKT/π S̃2. The KT temperature for the XY model, described by the Hamiltonian (1), can be
determined [10] by the crossing between the curve ρ(T ), and the line γ = 2T/π S̃2. Using this procedure, TKT(D) was
calculated in Ref. [4]. The discontinuous drop in ρ in figure 3 of this reference, can be considered to be a spurious effect. If
we extrapolate the curve continuously to zero, we can estimate DC as about 5.3.
At T = 0, the energy of the first term in Eq. (3) is minimized by the magnetically ordered state in which all spins are

oriented in the same direction. One has a gapless phase described by the spin wave formalism. The energy of the second
term is minimized when the orientation of the spins are maximally uncertain (by the uncertainty principle), and this term
leads to a quantum paramagnetic state in which the spins do not have a definite orientation. This phase consists of a unique
ground state with total magnetization Sztotal = 0, separated by a gap from the first excited states which lie in the sectors
Sztotal = ±1. The elementary excitations are called excitons, with S = 1 and an infinite lifetime at low energies.
Using the equation of motion for φ:

φ̇r = −i[φr ,H] = −2ibSzr , (4)

we obtain, in the continuum limit

H =
1
2

∫
dxdy

[
ρS̃2(∇φ)2 +

1
2b

(
∂φ

∂t

)2]
, (5)

which is the O(2) non-linear sigma model. We note that in the above equation, φ is an angle variable. The KT transition,
as was said before, is caused by topological excitations and is obtained only when we consider φ as an angle. It can not be
obtained using only the spin wave formalism. However, the behavior of the spin correlation function is correctly given by
the harmonic Hamiltonian using the expression:

〈(Sx0S
x
r + S
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0S
y
r )〉 ≈ 〈[S(S + 1)− (S

z
r )
2
]〉〈cos(ϕ0 − ϕr)〉

= 〈[S(S + 1)− (Szr )
2
]〉 exp

[
−
1
2
〈(ϕ0 − ϕr)

2
〉

]
. (6)

This happens because in (6) we have effectively bypassed the higher order perturbative theory.
In this paper we will be interested in the region D ≥ DC , since the region D < DC has already been well studied. In

Section 2 we present a Landau–Ginzburg theory for the model. In Section 3 we introduce the bond-operator representation
and present results, at finite temperature, of a self-consistent mean field calculation. The calculation of Section 3, although
in agreement with the one calculated in Section 2, is more general, since it leads to quantitative results.

2. Landau–Ginzburg approach

In the low temperature phase of the region D < DC we have a power-law decay of the correlations but no broken
symmetry. This phase is not described by a simple order parameter in the Landau–Ginzburg (LG) theory of phase transitions.
We can, however, use the LG formalism to study the quantum-phase transition if, for D < DC , we restrict ourselves to the
T = 0 limit only. The finite temperature behavior in the KT region is well known. Thus we write

F =
∫
ddrdτ

[
(∇φ)2 + (∂τφ)

2
+ δφ +

V
2
φ4
]
, (7)

where here φ is a field variable (and not an angle) and τ is an imaginary time.
In a path integral formulationweuse theHubbard–Stratanovich transformation to decouple the quartic term, introducing

an auxiliary field λ. In the saddle-point approximation, λ is a constant. All this is standard procedure [1,11]. Minimization
with respect to λ leads to:

λ = VT
∑
n

∫
ddk
(2π)d

1
δ + k2 + ω2n + λ

, (8)
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