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a b s t r a c t

We investigate multifractal properties of daily price changes in currency rates using the
multifractal detrended fluctuation analysis (MF-DFA). We analyze managed and indepen-
dent floating currency rates in eight countries, and determine the changes in multifractal
spectrum when transitioning between the two regimes. We find that after the transition
frommanaged to independent float regime the changes in multifractal spectrum (position
of maximum and width) indicate an increase in market efficiency. The observed changes
are more pronounced for developed countries that have a well established trading market.
After shuffling the series, we find that the multifractality is due to both probability density
function and long term correlations for managed float regime, while for independent float
regime multifractality is in most cases caused by broad probability density function.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The foreign exchange market (FX) is the world’s largest and most liquid financial market. Its huge trading volume, high
degree of liquidity, diversification of traders, geographical dispersion, amongst other factors make it uniquely challenging
for empirical analysis, forecasting, and model development. The exchange rate regimes followed by governments across
the world are crucial determinants of the foreign-exchange market. After World War II, governments adopted the Bretton
Woods system where currencies were pegged against the US dollar, which was in turn pegged to gold. Bretton Woods sys-
tem helped countries avoid inflation and establish credibility of their currencies, but also removed their ability to conduct
an independent monetary policy. Consequently, in 1971 the US dollar switched to a floating currency, a move many ma-
jor governments followed. Floating currencies are made up of two exchange-rate regimes: managed float and independent
float. Exchange rates under the independent float regime fluctuate according to the foreign-exchangemarket, whereas rates
under the managed float regime, (also known as dirty float), fluctuate on a daily basis and are influenced by government
intervention. Transitions from managed to independent float regimes depend on various economic, political, and market
factors. This brings the question how rate transitions affect market efficiency and economic welfare. As an extremely com-
plex system, the FX market represents an ideal polygon for testing the usefulness of various methods including fractals,
multifractals, and chaos theory, as tools to quantify market dynamics [1–7]. Multifractal properties as a measure of effi-
ciency of financial markets were extensively studied [8–11], however less is known about efficiency of different exchange
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rate regimes [7,12]. In thisworkwe apply theMultifractal Detrended Fluctuation Analysis (MF-DFA) [13] to compare the sta-
tistical properties of the Australian Dollar (AUD), Brazilian Real (BRL), Malaysian Ringgit (MYR), New Zealand Dollar (NZD),
South Korean Won (KRW), Sweden Krona (SEK), Taiwanese New Dollar (TWD), and Thai Baht (THB) per US Dollar (USD)
exchange rate before and after the transition from managed to independent float regimes. We analyze logarithmic returns
of daily closing exchange rates and find parameters that describe multifractal spectrum: position of maximum α0, width of
the spectrum W , and skew parameter r . We also apply the MF-DFA analysis on the shuffled series to identify the effects of
long term correlations and probability density function. This paper is organized as follows: We first describe the data and
present the methodology, then present the results of our analysis, and finally we draw conclusions.

2. Methodology

Multifractal time series are characterized by a hierarchy of scaling exponents corresponding to different scaling behavior
of many interwoven subsets of a series [13]. For non-stationary processes several methods have been proposed, such as the
wavelet transformmodulus maxima (WTMM) method [14], multifractal detrended fluctuation analysis (MF-DFA) [13], and
multifractal moving average analysis [15]. In this work we use the MF-DFA method which has been successfully applied
in various phenomena such as physiological signals [16], hydrological processes [17], geophysical data [18], forest fires
records [19] and financial time series [8,9,11].

The MF-DFA method proceeds as follows [13]: (i) Integrate the original temporal series x(i), i = 1, . . . ,N to produce
y(k) =

k
i=1 [x(i) − ⟨x⟩], where ⟨x⟩ is the mean value of x(i), k = 1, . . . ,N . (ii) Divide the integrated series y(k) into

Nn = int(N/n) non-overlapping segments of length n. Calculate the local trend yi(k) from amth order polynomial regression
in each segment and subtract it from y(k) to detrend the integrated series. (iii) Calculate the detrended variance of each
segment (by subtracting the local trend) and average over all segments to obtain the qth order fluctuation function:

Fq(n) =
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where q can take any real value except zero. (iv) Repeat this calculation to find the fluctuation function Fq(n) for many
different box sizes n. If long-term correlations are present, Fq(n) should increase with n as a power law Fq(n) ∼ nh(q), where
the scaling exponent h(q) (also called generalized Hurst exponent) is calculated as the slope of the linear regression of
log Fq(n) versus log n.

The generalized Hurst exponent is a decreasing function of q for multifractal time series and constant for monofractal
processes. For positive (negative) values of q, exponent h(q) describes the scaling of large (small) fluctuations [13]. The
exponent relates to the classical multifractal exponent defined by the standard partition multifractal formalism as τ(q) =

qh(q)−1,where τ(q) is a linear function formonofractal signals and a nonlinear one formultifractal signals [13].Multifractal
series are also described by the singularity spectrum f (α) through the Legendre transform

α(q) = dτ(q)/dq, f (α) = qα − τ(q) (2)

where f (α) denotes the fractal dimension of the series subset characterized by the Holder exponent α. For monofractal
signals, the singularity spectrum produces a single point in the f (α) plane, whereas multifractal processes yield a humped
function [13].

Multifractality in a time series may be caused by: (i) a broad probability density function for the values of the time
series; and (ii) different long-term correlations for small and large fluctuations. To determine the type of multifractality
one should analyze the corresponding randomly shuffled series. The shuffled series from multifractals of type (ii) exhibit
simple random behavior with h(q) = 0.5 and f (α) being reduced to a single point, while for multifractals of type (i) the
original h(q) dependence (and thewidth ofmultifractal spectrum) is not changed. If the shuffled series demonstratesweaker
multifractality than the original one, both kinds of multifractality are present [13]. In order to measure the complexity of
the series, we fit the singularity spectra to a fourth degree polynomial

f (α) = A + B (α − α0) + C (α − α0)
2
+ D (α − α0)

3
+ E (α − α0)

4 (3)

and calculate the multifractal spectrum parameters: position of maximum α0; width of the spectrum W = αmax − αmin,
obtained from extrapolating the fitted curve to zero; and skew parameter r = (αmax − α0) / (α0 − αmin) where r = 1 for
symmetric shapes, r > 1 for right-skewed shapes, and r < 1 for left-skewed shapes. Roughly speaking, a small value
of α0 suggests the underlying process is more regular in appearance. The width of the spectrum W measures the degree
of multifractality in the series (the wider the range of fractal exponents, the richer the structure of the series). The
skew parameter r determines which fractal exponents are dominant: fractal exponents that describe the scaling of small
fluctuations for right-skewed spectrum, or fractal exponents that describe the scaling of large fluctuations for left-skewed
spectrum. These parameters lead to a method of measuring the complexity of the series: a signal with a high value of α0,
a wide range W of fractal exponents, and a right-skewed shape r > 1 may be considered more complex than one with
opposite characteristics [20].
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