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Abstract

We present numerical calculations of a tight-binding model applied to a finite square lattice in the presence of a perpendicular magnetic
field. The persistent current associated with each eigenstate is calculated, the chirality of which is determined by whether the eigenstate
exists within the bulk or localised to the edges of the lattice. This treatment allows us to extract oscillations in the magnetization, which are
analogous to de Haas-van Alphen oscillations. We consider the influence of short range disorder and long range potential modulations on

these systems.
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1. Introduction

If a two-dimensional (2D) electron system is subjected
to a perpendicular magnetic field B, the energy dispersion is
quantised into Landau levels. In a tight-binding model,
these Landau levels become self-similar patterns of
magnetic subbands and the resulting spectrum is the
celebrated Hofstadter butterfly [1]. The increasing interest
in nanotechnology and quantum dots has meant simulations
of finite systems are of considerable interest [2-4]
particularly in order to illustrate the importance of edge
states. In addition the advantage of a finite system is that it
is characterised by a finite basis of energy eigenfunctions,
which can be used to elucidate properties particular to those
eigenfunctions. The method is flexible in that it is
straightforward to introduce anisotropy and adjust the
geometry of the systems. In this work we present the results
of numerical simulations of finite sections of a simple
square lattice, of lattice constant a, modeled using a tight-
binding model.

2. Model
The approach is described in detail elsewhere [3,4,5].

Taking the vector potential 4 to be given by 4=(0,Bx,0) the
matrix components of our Hamiltonian at 7=0 become

<wn,m|mwn,m>=E0 (1)
<wn,m|m14Jn:1,m>=te12mma o
(wn,mlH]wn’mi_l>=t (3)
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where a=Ba2/<I>0, the number of flux quanta passing
through each plaquette of the square lattice, @ is the flux
quantum, and Ej) is the atomic energy. Each plaquette of the
lattice therefore contributes an Aharanov-Bohm phase factor

e2Mi0 A routine diagonalisation procedure allows us to
calculate the spectra for finite lattice with increasing
numbers of plaquettes. The energy eigenvalues for this
Hamiltonian can therefore be calculated numerically as a
function of magnetic field. The result for an isotropic lattice
with 20x20 sites, is an energy spectrum which resembles the
Hofstadter butterfly, shown in Figure 1(a). The procedure
can in principle be extended to a 7=0 system by including
Fermi-Dirac statistics in the calculation of thermodynamic
properties.

Next we consider the properties of the eigenfunctions
themselves. The probability current is given by

h
=3 2,-,,,*[wn,m*(wn,mﬂ'wn,m-l)i
nm )

* / _ 7 .
W m (‘Pn+1,me+2mma'wn-l,me me(x)j]

where n and m are integers denoting a lattice site located at

rn’m=nai+maj. This approach has been useful in quantum

dot and antidot studies [3,4]. The persistent current paths are
comparable to semiclassical cyclotron orbits, where the
cyclotron radius, 7, shrinks as the magnetic field increases.
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Fig. 1. (a) Is the energy spectrum for an isotropic tight-binding square
lattice with 20x20 sites. (b) shows a bulk state at a=0.1 with energy E/||~-
3.4. (c) shows an edge state at a=0.1 with energy E/|t|~-2.7. The arrows
show the direction of persistent currents carried by the eigenstate. The bulk
state and the edge state have opposite chirality.

In the regions of Figure 1(a) where this cyclotron radius is
comparable to the size of the finite lattice (i.e. at small
magnetic fields and close to the band centre) many states are
edge states (“skipping orbits” in a finite semiclassical
picture) and in these regions, the Landau level structure is
indistinct. In the opposite limit, these semiclassical
skipping orbits carry a current in the opposite direction to
the bulk cyclotron orbits; correspondingly, the
eigenfunctions in our model carry persistent currents whose
chirality in high magnetic fields is associated with whether a
given state is localised around the edges or in the bulk of the
lattice [6]. Figures 1(b) and (c) illustrate persistent currents
associated with bulk and edge eigenstates. The magnetic
contribution of these eigenstates as the field is increased is
opposite: depending on the region of the spectrum
considered, the bulk states will provide a diamagnetic

contribution to the magnetisation and the edge states a
paramagnetic contribution, or vice versa [3,6].
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Fig. 2. The low field region of Figure 1(a) The thick solid line represents
the energy of a cyclotron orbit with radius 7.=5a. On the high field side of

the line edge and bulk levels are well defined. Electric-dipole transitions
between these levels have been considered in Reference [9].

Figure 2 shows an enlargement of Figure 1(a) for low
magnetic fields. The solid line represents the energy of a
state with r,=5a, one quarter of the length of the edge of our

square lattice. On the high-field side of the line, the Landau
level structure emerges. In the low-field region, the
spectrum is dominated by edge states.

3. Oscillations in the Magnetisation

The magnetisation is related to the internal energy £ of
the system [8] by

v () i (), )

where N is the number of electrons and is kept constant as in
a canonical ensemble. Oscillations in the magnetisation
occur as the Fermi level, which is tied to the energy of the
highest occupied energy level, varies with field. In so doing
it passes anti-crossings at which states at the Fermi level
change from having a paramagnetic response to a
diamagnetic response, or vice-versa. Correspondingly, the
state at the Fermi level changes from bulk character to edge
character.  These oscillations dominate the total
magnetisation because the corresponding oscillations
below the Fermi level tend to compensate each other [4].
Figure 3 illustrates the magnetisation oscillations,
resembling de Haas-van Alphen oscillations with fine
oscillations superposed due to the numerous anti-
crossings traversed by the Fermi level.  The frequency F
corresponds to the well known semiclassical, saw-tooth



Download English Version:

https://daneshyari.com/en/article/9776265

Download Persian Version:

https://daneshyari.com/article/9776265

Daneshyari.com


https://daneshyari.com/en/article/9776265
https://daneshyari.com/article/9776265
https://daneshyari.com

