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a b s t r a c t

This paper investigates the role of asymmetrical degree-dependent weighted couplings in
synchronization of a network of Kuramoto oscillators, where the conditions of coupling
criticality for the onset of phase synchronization in degree-weighted complex networks
are arrived at. The numerical simulations visualize that for networks having power-
law or exponential degree distributions, asymmetrical degree-weighted couplings (with
increasing weighting exponent β) increases the critical coupling to achieve the onset of
phase synchronization in the networks.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Collective synchronization in a large population of oscillators having natural different frequencies is a typical
phenomenon in the fields of biology, physics, and engineering [1], whose mathematical descriptions are traced back to the
pioneering work of Wiener [2] andWinfree [3]. Kuramoto refined this connection between nonlinear dynamics and statical
physics, and formalized the solution to a network of globally coupled limit-cycle oscillators [4,1], answering the situation
why the oscillators are completely de-synchronized until the coupling strength overcomes a criticality Csyn.

In the past decade, fruitful outcomes have witnessed the so-called small-world [5] and scale-free [6] phenomena of
network connectivities in categories of large-scale complex networking systems including biological, engineering, social and
economic systems [7–11], and, the discoveries of small-world and scale-free features in these natural and artificial complex
networks have stimulated very wide concerns of how the complexity of a network structure facilitates and constrains the
collective synchronous behaviors of a network, especially to themain interest of this paper, of Kuramoto oscillators [12–19].

For instance, Hong et al. reported their synchronization observations of a larger criticality of coupling strength on small-
world networks than that of globally coupled networks [12]. And, it has also been stated the absence of critical coupling
strength in frequency synchronization of a swarm of oscillators connected as a scale-free network having a power-law
exponent 2 < γ ≤ 3 [13], which was further found to be determined by the largest eigenvalue of the adjacencymatrix [14].
A more general investigation unveiled different paths to the emergent local patterns of synchronization [15], while Brede
very recently proposed a method to generate a synchrony-optimized network of Kuramoto oscillators [16].

It should be noticed that a large body of previous investigations hold an assumption that every pair of connected nodes
are coupled together with identical and symmetric couplings. However, in practice it is more general that pairs of nodes
of a network are connected with non-identical and asymmetric couplings, where the collective synchronous behaviors of
such networks are naturally very interesting to further explore [17–19]. It was visualized that with the asymmetric degree-
weighted coupling C/ki, where ki is the degree of node i, a uniform coupling criticality of collective synchronization is
independent of complexity of network topologies [19]. In this paper, we further study the role of a more general case of
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degree-weighted couplings C/kβi , where β is the degree-weighted exponent, in the synchronization onset of a network of
Kuramoto oscillators.

2. The general case of Kuramoto oscillator networks with degree-weighted couplings

We consider a network of N coupled limit-cycle oscillators, whose phases θi, i = 1, 2, . . . ,N , evolve as

dθi
dt

= ωi +

N∑
j=1

Cijaij sin(θj − θi), i = 1, . . . ,N, (1)

where Cij is the coupling strength between node (oscillator) i and node (oscillator) j, and aij is 1 (or 0) if node i is connected
(or disconnected) with node j. Frequencies ωi, i = 1, 2, . . . ,N , are randomly distributed following the given frequency
distribution g(ω), which is assumed that g(ω) = g(−ω).

Define the degree-weighted asymmetric coupling scheme for node i, i = 1, 2, . . . ,N

Cij = Ci =
C

kβi
, (2)

where the coupling strength C is a positive constant, β is the weighting exponent, and ki is the degree of node i, which fits
the given degree distribution P(k) of a network. Therefore, we have

dθi
dt

= ωi +
C

kβi

N∑
j=1

aij sin(θj − θi), i = 1, . . . ,N. (3)

If for every node i, its degree ki = N, i = 1, 2, . . . ,N , then when β = 1, model (3) equals the classic Kuramoto model for
globally coupled networks [1,4].

Define the order parameter (r,Ψ ) as Refs. [13,19]:

reiΨ =

∫
dω

∫
dk

∫
dθg(ω)P(k)kρ(k, ω; t, θ)eiθ∫

dkP(k)k
, (4)

where ρ(k, ω; t, θ) is the density of oscillators with phase θ at time t with the given frequency ω and degree k, which
satisfies the normalization as∫ 2π

0
ρ(k, ω; t, θ)dθ = 1. (5)

Assume v to be the continuum limit of the right-hand side (r.h.s.) of Eq. (3), and each randomly selected edge is connected
to the oscillator having degree k, frequency ω, and phase θ with probability kP(k)g(ω)ρ(k,ω;t,θ)∫

dkP(k)k . Therefore, determined by the
continuity equation

∂ρ

∂t
= −

∂(ρv)

∂θ
, (6)

the density ρ(k, ω; t, θ) evolves as

∂ρ(k, ω; t, θ)
∂t

= −
∂

∂θ

[
ρ(k, ω; t, θ)

(
ω +

C
kβ

k

∫
dω′

∫
dk′

∫
dθ ′g(ω′)P(k′)k′ρ(k′, ω′

; t, θ ′)∫
dk′P(k′)k′

sin(θ ′
− θ)

)]
. (7)

Substituting Eq. (4) into Eq. (7) yields

∂ρ(k, ω; t, θ)
∂t

= −
∂

∂θ

{
ρ(k, ω; t, θ)

[
ω + Ck1−βr sin(Ψ − θ)

]}
, (8)

whose solution independent of time is

∂

∂θ

{
ρ(k, ω; θ)

[
ω + Ck1−βr sin(Ψ − θ)

]}
= 0. (9)

where ρ(k, ω; θ) is assumed to be

ρ(k, ω; θ) =


δ
(
θ − arcsin

( ω

Ck1−βr

))
if

|ω|

Ck1−βr
≤ 1

D(k, ω)
|ω − Ck1−βr sin θ |

otherwise.
(10)
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