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h i g h l i g h t s

• Population of neurons has shown significant amount of higher-order correlations.
• We account for beyond second order inputs correlations seen by each neuron.
• We obtain an exact analytical expression for the joint distribution of firing.
• This method allows us to characterize higher-order correlations in a neuronal pool.
• Input nonlinearities can enhance coding performance by neural populations.
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a b s t r a c t

Recent experiments involving a relatively large population of neurons have shown a very
significant amount of higher-order correlations. However, little is known of how these
affect the integration and firing behavior of a population of neurons beyond the second
order statistics. To investigate how higher-order inputs statistics can shape beyond pair-
wise spike correlations and affect information coding in the brain, we consider a neuronal
pool where each neuron fires stochastically.We develop a simplemathematically tractable
model that makes it feasible to account for higher-order spike correlations in a neuronal
pool with highly interconnected common inputs beyond second order statistics. In our
model, correlations between neurons appear from q-Gaussian inputs into threshold neu-
rons. The approach constitutes the natural extension of the Dichotomized Gaussianmodel,
where the inputs to the model are just Gaussian distributed and therefore have no input
interactions beyond second order. We obtain an exact analytical expression for the joint
distribution of firing, quantifying the degree of higher-order spike correlations, truly em-
phasizing the functional aspects of higher-order statistics, aswe account for beyond second
order inputs correlations seen by each neuron within the pool. We determine how higher-
order correlations depend on the interaction structure of the input, showing that the joint
distribution of firing is skewed as the parameter q increases inducing larger excursions of
synchronized spikes. We show how input nonlinearities can shape higher-order correla-
tions and enhance coding performance by neural populations.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Neurons in the cortex receive 3000–10,000 synaptic inputs, 85% of which are excitatory. Nearly half of the excitatory
inputs to any one neuron come from nearby neurons that fall within a cylinder of 100–200 µm radius, arranged as a col-
umn, sometimes termed a mini-column [1–4]. This suggests that cortical neurons receive abundant excitatory inputs and
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are embedded in a network of highly convergent signals. These networks have a recurrent nature, thus it is likely that those
neurons receive similar inputs and emit spikes under similar conditions. This means that the conditions that lead to a re-
sponse of any one neuron in the mini-column are likely to involve considerable activity from a large number of its inputs
beyond second order statistics. It is therefore reasonable to expect that many spike inputs will arrive in synchrony within a
very small time window.

The integration of features into gestalt entities [5–8] is one the most important challenges in cognition. It has been
proposed that correlated activity within themillisecond time rangemay be the signature of neuronal assembly formation. If
this is the case, it may be essential in the context of multiple object encoding. According to the temporal binding hypothesis
of von der Malsburg, cells belonging to the same assembly fire action potentials synchronously with a precision of a few
milliseconds, and cells belonging to different assemblies fire asynchronously. This hypothesis requires cortical neurons to
act as coincidence detectors [9–11]. In agreementwith the latter, themajor causes of correlated firing in neural networks are
common presynaptic input. Behavior then stems from the emergent properties of a large set of neurons with overlapping
neural circuits that share common dynamical inputs. A primary challenge in theoretical neuroscience is to gain further
understanding of circuit dynamics incorporating the neuronal activity at a variety of spatial and temporal scales. Moreover,
temporal dynamics and plasticity encode information about the outside world. Identification of relevant neural ensembles
underlying cognitive behavior thus requires new modeling techniques and theoretical frameworks. Approaches that may
help to link themultiple spatial, temporal, and organizational scales of neuronal assemblies could provide important insights
into the emergent properties of the neural network, as they may lead to new discoveries concerning neural circuitry that
could eventually shape the biophysical bases of behavior.

Information processing in the brain is usually encoded in the activity of large and highly interconnected neural popula-
tions. It has been proposed that synapses between neurons that fire synchronously are strengthened, forming cell assemblies
and phase sequences. At short scales, it is expected that cell assemblies would affect information processing while at longer
scales they could shape behavior and perception. Neuronal cells synchronize through correlated input, and spike synchro-
nization between neurons emerges as a result of transient activity. Approaches using binary maximum entropy models at a
pairwise level have been developed considering a very large number of neurons on short time scales [12–14]. These models
can capture essential structures of the neural population activity, however, due to their pairwise nature their generality
has been subject to debate [15–17]. In particular, E. Ohiorhenuan and J. D. Victor have shown the importance of triplets of
spikes to characterize scale dependence in cortical networks [17,18]. That is to say, although models accounting for pair-
wise interactions have proved able to capture some of the most important features of population activity at the level of the
retina [12,13], pairwise models are not enough to provide reliable descriptions of neural systems in general, as experiments
considering a relatively large population of neurons have displayed a very significant amount of higher-order correlations
(‘HOCs’) [15–19].

More specifically, neurophysiological research has shown that pairwise models fail to explain the responses of spatially
localized triplets of cells [17–20], along with describing the activity of large neuronal populations responding to natural
stimuli [19]. Deviations from theMaximumEntropymodel indicate thatHOCs have to be taken into account formodeling the
population statistics [21–24]. Thus, the intricacy of the neurophysiological data highlights the need to develop a theoretical
framework accounting for the statistical complexity of synchronous activity patterns. Pattern probabilities for the so-called
Dichotomized Gaussian (‘DG’) model [20–24] were estimated using the cumulative distribution of multivariate Gaussians
showing high precision fitting of the experimental data.

In this paper, we provide a simplemathematically tractablemodel able to account for HOCs in the joint firing distribution
of a neuronal population. In our model, correlations between neurons arise from q-Gaussian inputs into threshold neurons.
It is therefore an extension of the DGmodel proposed by Amari [21], where the inputs to themodel are Gaussian distributed
and therefore have no interactions beyond second order. Our current theoretical formalism relies on recent progress made
on the Extended Central Limit Theorem (‘ECLT’), and thus using mathematical tools of non-extensive statistical mechanics
[25–33], we provide an approach that quantifies the degree of HOCs. We present the exact analytical solution of the joint
distribution of firing including neural correlation patterns of all orders across a population. That is, we estimate by means
of an analytically solvable model the amount of correlations of order higher than two in a neuronal pool through direct
application of a q-Gaussian distribution of common synaptic inputs providing the expression of the joint distribution, Tsallis
Relative Entropy and Fisher Information. We test the robustness of our approach using a set of simulated independent
and correlated neurons. Using our model, we investigate different analytical solutions when considering three typical
distributions: concentrated, widely spread, and bimodal. We study the emergent properties of the Fisher information
in a large neural population, and show their impact on the efficiency of population coding. Our approach allows us to
investigate how input nonlinearities can shape HOCs and improve information transmission. This could be a useful tool
for understanding how groups of neurons could integrate into unique functional cell assemblies.

2. Methodology

2.1. Higher order interactions in the pooled model

We represent the neuronal firing in a population of size N by a binary vector x = (x1, . . . , xN), where xi = 0 if neuron i
is silent in some time window1T and xi = 1 if it is firing a spike. We consider the probability distribution of those binary
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