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Abstract

Using a hard sphere reference system with square well attractive tail the structure factors are computed for pure metals and then

extended to Ag–In binary alloy. The agreement between the theoretical and experimental values is good. Further new equations

have been derived for the temperature variation of diffusion coefficients and they are applied successfully to pure metals and

extended to the binary Ag–In alloy. The applicability of these equations is verified by evaluating the activation energies and com-

paring them with literature values for these systems. The chemical short-range order parameter has been computed as a function of

composition for Ag–In system through structural studies in the long wave limit, which gives valuable information regarding the

nature of the liquid alloy at various compositions.
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PACS: 61.20.Gy; 61.25.Mv

1. Introduction

The subject on structural studies of liquid metals and

alloys with their applications in recent days [1–4] is

being investigated to understand the complexities of liq-
uids. There are liquids of various types of clusters and

structures for example liquid selenium has various types

of structures like ring structure, chain structure and

helix type. Thus a single radius for liquid selenium is

not appropriate. Hence one should possibly consider

more than one radius to get the correct structure factor.

Thus it should be treated as multi component system.

Liquid metal structure factors resemble closely to hard

sphere reference systems, and calculations to evaluate

static and dynamic properties have been found to be

quite reasonable in many cases [5]. It must be mentioned

that short range forces primarily determine the structure
of a liquid and the relatively long-range attractive part

of the potential provides a uniform attractive back-

ground. Hence even if one gets the results correctly, with

just hard sphere part we cannot conclude that the model

can be judged according to the success with which we ac-

count for determining the properties of liquids, as the

hard sphere potential lacks realistic properties. Thus in

evaluating the properties we take into consideration an
attractive part with hard sphere reference system. The

square well fluid is the simplest one possessing the basic

characteristics of a real fluid. Recently application of

square-well potential to liquids is being worked to eval-

uate various properties [6–8]. It is an excellent model [9]
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for liquids in which internal degrees of freedom of indi-

vidual particles are not important. Here we consider,

that pair wise potential plays a significant role and mul-

tiparticle interactions do not play a major role. We

apply the square well model to a sample of liquid metals

to compute the activation energy of the metals. Further
we also extend these concepts to binary alloy taking Ag–

In system as an example. We also formulate expressions

for the temperature gradient of diffusion coefficients

from the structural aspects of liquid metals and alloys.

It may be mentioned that several authors have re-

ported X-ray and neutron diffraction results of different

liquid alloys but the resulting picture is not entirely sat-

isfactory. This is due to the fact that a unique set of par-
tial structure factors cannot be determined from two

diffraction measurements [10]. A model calculation pro-

vides a way to compute the three partial structure fac-

tors. We then compute total structure factors, which

are incorporated to evaluate activation energy.

2. Theory

We use square well as an attractive tail over hard

sphere reference system to evaluate the structure factors

of liquid metals [11,12]. Thus we write the Direct Corre-

lation Function (DCF) of square well fluid as

CðrÞ ¼ ChsðrÞ þ CswðrÞ: ð1Þ
We use Wertheim�s [13] solution of Percus–Yevick�s

equation for hard spheres along with a square well [14]

attractive minimum as a perturbation over hard sphere

reference system to evaluate the structure factors. The

self-diffusion coefficient of the metals can be written as

D ¼ kBT
n

: ð2Þ

Here n is the friction coefficient, which is a sum of the

friction coefficients arising from the forces of hard-core

and soft part given as follows:

n ¼ nH þ nS þ nSH
� �

: ð3Þ

The contribution from the partial friction coefficients

i.e. hard core (nH), the soft part (nS) and the hard soft

part (nSH), which incorporate the radial and structural

aspects, are given as follows:

nH ¼ 8

3
qgðrÞr2ðpmkBT Þ1=2

; ð4Þ

nS ¼ � 1

3

q
4p2

pm
kBT

� �1=2 Z 1

0

k3uSðkÞGðkÞdk ð5Þ

nSH ¼ � 1

3
qgðrÞ m

pkBT

� �1=2

�
Z 1

0

½kr cosðkrÞ � sinðkrÞ	uSðkÞdk; ð6Þ

uSðkÞ ¼ 4pe

k3
Akr cosðAkrÞ � sinðAkrÞ½

�kr cosðkrÞ þ sinðkrÞ	; ð7Þ

GðkÞ ¼ 1

q
½SðkÞ � 1	: ð8Þ

The logarithmic variation of the diffusion coefficient

with temperature is evaluated from Einstein�s equation

and it is given by

d lnD
dT

¼ 1

T
� d ln n

dT
: ð9Þ

Hence to evaluate d lnD
dT we have to evaluate d ln n

dT . Thus

the gradient of the hard sphere part with respect to tem-

perature is given by

dnH

dT
¼ nH

2T
� jnH þ 8

3
qr2ðpmkBT Þ1=2

� 2j
3
½gðrÞ � 1	 þ j

6p2q

Z 1

0

k2½SðkÞ � 1	 cosðkrÞdk
�

þ 1

2p2qr

Z 1

0

k sinðkrÞZðkÞdk
�
: ð10Þ

The temperature derivative of the soft part and hard

soft part of the friction coefficients are given by the fol-

lowing equations:

dnS

dT
¼ � nS

2T
� 1

12p2

pm
kBT

� �1=2 Z 1

0

k3uSðkÞZðkÞdk; ð11Þ

dnSH

dT
¼ � nSH

2T
� jnSH � 1

3
q

m
pkBT

� �1=2

�
Z 1

0

½kr cosðkrÞ � sinðkrÞ	uSðkÞdk

� 2j
3
½gðrÞ � 1	 þ j

6p2q

Z 1

0

k2½SðkÞ � 1	 cosðkrÞdk
�

þ 1

2p2qr

Z 1

0

k sinðkrÞZðkÞdk
�
: ð12Þ

Here

ZðkÞ ¼ dSðkÞ
dT

¼ j½SðkÞ	 ½1 � SðkÞ	 þ 24gSðkÞ
ðkrÞ6

4Pagð2 þ gÞ
ð1 þ 2gÞð1 � gÞ

�(

þQbðg2 þ 9gþ 2Þ
ð2 þ gÞð1 � gÞ þ Rcð2g2 þ 9gþ 1Þ

ð1 þ 2gÞð1 � gÞ � eS

jkBT 2


)
;

ð13Þ
and the other coefficients that enter in Eq. (13) are given
by the following equations:

a ¼ ð1 þ 2gÞ2

ð1 � gÞ4
; ð14Þ
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