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a b s t r a c t

Boolean networks can be used as simple but general models for complex self-organizing
systems. The freedom to choose different rules and structures of interactions makes this
model applicable to a wide variety of complex phenomena. It is known that the damage
dynamics in annealed Boolean systems should fall in the same universality class of the
directed percolation model. In this work we present results about the behavior of this
model at and near the critically ordered condition for both the annealed and the quenched
versions of the model. Our study concentrates on the way the system responds to a small
perturbation. We show that the characteristic correlation time, i.e., the time in which any
memory of this perturbation is lost, diverges as one moves towards criticality. Exactly
at the critical point, we observe that the time for returning to the natural state after the
perturbation follows a power-law distribution. This indicates that most perturbations are
quickly restored, while few events may have a global effect on the system, suggesting
a mechanism that assures at the same time robustness and adaptability. The critical
exponents obtained are in agreement with the values expected for the universality class
of mean-field directed percolation both in the annealed and in the quenched Boolean
networkmodel. This gives further evidence that annealed Boolean networksmay in certain
conditions provide a good model for understanding the behavior of regulatory systems.
Our results may give insight into the way real self-organizing systems respond to external
stimuli, and why critically ordered systems are often observed in Nature.

© 2008 Published by Elsevier B.V.

1. Introduction

Among the most relevant characteristics of complex systems is their property of spontaneously evolving towards highly
organized states [1]. This means that the individual agents comprising the system have the ability to self-regulate their
behavior to achieve a desired global condition. Moreover, ordering is achieved not by means of a precise structure of
interaction between the agents, but as an emergent condition of the global dynamics. In other words, there are no central
controllers or task distribution; each agent responds only to their local environment without complete knowledge of
the system as a whole. Such a distributed design allows the system to efficiently correct local failures and respond to
environmental changes.

Studies of models of complex systems have shown that by tuning a few parameters governing the interactions between
the individual agents it is possible tomake the system undergo a transition from an ordered to a chaotic state [2]. It has been
speculated that neither the ordered nor the chaotic phase could display at the same time the robustness and adaptability
observed in real regulatory systems, and these systems would more probably lie in the region of the phase space close to
the critical condition [2]. It has also been proposed that the critical condition is often observed in Nature due to a dynamical

∗ Corresponding author. Tel.: +55 85 33669903; fax: +55 85 33669450.
E-mail address: auto@fisica.ufc.br (A.A. Moreira).

0378-4371/$ – see front matter© 2008 Published by Elsevier B.V.
doi:10.1016/j.physa.2008.06.009

http://www.elsevier.com/locate/physa
http://www.elsevier.com/locate/physa
mailto:auto@fisica.ufc.br
http://dx.doi.org/10.1016/j.physa.2008.06.009


5648 S.S.B. Jácome et al. / Physica A 387 (2008) 5647–5652

control of the parameters that drives the system towards a critical self-organizing condition without the need of any fine-
tuning [3]. Therefore, understanding the critical properties of these complex systems should be of fundamental importance
in the study of their dynamics.

Boolean networks were introduced a few decades ago as a simple model for self-regulating systems [4]. Since then, this
model has been applied in several areas including gene regulation [5,6], evolution [7], and neural networks [8] (see also
Ref. [9] for a review). A Boolean network consists of a system of N nodes, whose states are described by a Boolean variable
σi, that is, each node can assume only two possible states (0 or 1). The evolution takes place in discrete time steps, with all
the nodes updating their states simultaneously in accordance with a node-specific Boolean function,

σi(t + 1) = fi[σi1(t), σi2(t), . . . , σiki(t)], (1)

where fi is a Boolean function controlling the evolution of the ith node, and ki is the number of neighbors that can influence
the evolution of these nodes. In the random Boolean model, the two main parameters determining the dynamics of the
system are the average number of connections 〈K〉 and bias ρ, which gives the probability with which a random input σ
results in fi[σ] = 1. For simplicity, we consider here that every node has the same number of connections, that is 〈K〉 = K .
It has been demonstrated that in the random case the knowledge of these two parameters is enough to place the network
in the ordered or chaotic regime [10,11].

In both ordered and chaotic cases the system evolves towards limiting cycles or attractors. However, in the ordered
regime, after a perturbation the system typically returns to the same cycle, while in the chaotic regime there is finite
probability that the system evolves to a different final cycle [12]. The behavior of this model near the critical regime has
been the subject of some recent studies [13–15].

Here we study the behavior of random Boolean networks near the critical condition. We propose that the transition to
the critical regime can be characterized by the divergence of the relaxation time tR, that is, the time in which all memory
of damage applied to the network is lost. With simple scaling arguments we show that, for the annealed system and at the
critical condition, the cumulative probability distribution of tR decays as a power law P(tr > t) ∼ t−β , with an exponent
β = 1. By means of extensive numerical simulations we confirm that this distribution follows the expected power law. Our
results also show that finite network sizes result in an exponential truncation at time scales proportional to N1/2. We also
investigate the distribution of tR when departing from the critical condition. At the ordered phase, we observe that above a
characteristic time scale, the distribution presents a crossover to an exponential decay. In the sameway, at the chaotic phase
we observe in the distribution a crossover to a flat plateau; which is consistent with the divergence of the average relaxation
time expected in the chaotic condition. In both cases we find that the onset of the crossover diverges when the system is
set at the critical condition and the divergence is controlled by a characteristic exponent ν = 1. Finally we investigate the
effect of a quenched disorder in the critical exponents. We find that under certain conditions the same exponents can be
observed in the quenched case.

2. Methods

One order parameter commonly used to characterize the phase in random Boolean networks is the average Hamming
distance, that measures the number of nodes in different states in two replicas of the network. The two networks replicas
should be identical in every regard but the state of the evolving nodes. The nodes that are in different states in the replicas
correspond to the damaged fraction of the network. In the limit where the number of nodes goes to infinity, the Hamming
distance should converge to zero at the ordered phase and to a positive value at the chaotic phase. It is conjectured that
this thermodynamic limit can be modeled by the so called annealed approximation for Boolean networks [10]. In this
approximation the network of contacts and the updating rules of the whole system are rebuilt at each time step. The
damaging transitions of annealed systems are in the universality class of directed percolation [16]. In particular, for the case
of random networks the damaging transition should fall into the universality class of the mean-field directed percolation
model [17]. It was proposed [12] that the dynamics of Hamming distance should obey the following iterative map:

H(t + 1) = I1〈K〉H(t) +
1
2
I2〈K(K − 1)〉H(t)2 + · · · , (2)

where the influence Ii is the probability that a unit with i damaged neighbors becomes damaged in the following time step.
From Eq. (2) it is possible to approximate the rate of growth of the damage in the network.

dH
dt

≈ (I1〈K〉 − 1)H(t) +
1
2
I2〈K(K − 1)〉H(t)2 + · · · . (3)

For small damage, H(t) should evolve as H(t) = H0e(I1〈K〉−1)t . The ordered phase is characterized by an exponential
convergence of H(t) to zero, while at the chaotic phase H(t) diverges exponentially from zero. In between we have the
critical condition that happens when I1〈k〉 = 1. In the particular case of random Boolean networks, the average influence
does not depend on the number of damaged inputs, I1 = I2 = Ij = I = 2ρ(1 − ρ), thus reproducing the known critical
condition [10]. At the edge of chaos, the first-order term on the right side of Eq. (3) vanishes, and instead of an exponential
behavior, one finds a power-law decay,

H(t) ∼ t−β , (4)
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