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a b s t r a c t

It is shown that a new incompressible fluid equation is obtained by inclusion
of a new dimensionless coupling parameter in the momentum transport equation
derived in [L. Jirkovsky, L. Bo-ot, Momentum transport equation for the fluids using
projection–perturbation formalism and onset of turbulence, Physica A 352 (2005)
241–251] from the Boltzmann kinetic equation where the Boltzmann collision integral
includes inelastic interactions of quantumorigin among theparticles of the fluid. Numerical
results from the equation for the plane and circular Poiseuille flows are consistent with
the observations. The numerical tests also manifest a difference in the onset of turbulence
between the flat plates and the circular pipe flow systems. Although all obtained velocity
profiles are flattened at the center – a feature of turbulence – the results demonstrate
greater stability of the velocity profiles in the circular pipe flow.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In a paper on laminar–turbulent transition [1], second- and third-order momentum transport equations were derived
using projection–perturbation formalism. As a result a molecular parameter of quantum origin naturally appeared in the
equations. In this paper we use the new incompressible momentum transport equation obtained by the inclusion of a new
coupling parameter as a better approximation in representing higher-order momentum transport equations. It is necessary
that this equation be tested numerically. We report the first computational tests of such an approach. We apply flat plate
and circular pipe boundary conditions to generate the respective velocity fields. We explore and compare the generated
velocity profiles in both geometries to see the difference in turbulent behavior and onset of turbulence.

It is well established that the velocity profile of turbulent flow between two flat plates is parabolic and flattened towards
the center while for turbulent flow in circular pipe the velocity profile forms a surface of a classic flattened paraboloid
[2,3]. This cannot be explained by the standard incompressible Navier–Stokes equation because molecular structure is
ignored and hence difficulties in explaining the laminar–turbulent transition and origin of turbulence arise.

The molecular parameter in our study represents the strength of inelastic interactions related to the internal structure
of the fluid molecules and is explained if one adopts the hypothesis of a microscopic origin of turbulence [4–7]. Inelastic
interactions among the molecules of the fluid can be due to excitations of molecules to higher rotational levels resulting in
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loss of momentum and kinetic energy of the particles as explained in Refs. [5–7]. Turbulence is known to be a dissipative
process. Monatomic fluid has been modeled as a quantum confinement with discrete energy levels. The quantum kinetic
model of turbulence [7] is based on the idea of associating turbulence with deterministic chaos [4,8].

Although Landau regarded turbulence as a classical problem originating from the nonlinearity of the Navier–Stokes
equation, as a precursor to the theory of deterministic chaos, Landau in 1944 considered turbulence in time as a limit of
a sequence of an infinite number of instabilities each creating a new basic frequency. However in 1971 it was shown by
Ruelle and Takens and later in 1978 byNewhouse, that three instabilities creating three incommensurable frequencies could
already induce chaotic motion or turbulence. Turbulence in time is interpreted as the onset of turbulence [8].

Experimental evidence have been reported by Nerushev, Novopashin and Muriel suggesting the existence of slight
differences in the critical Reynolds numbers for different gases as predicted by the theory, particularly for carbonmonoxide
and nitrogen [9–11]. The difference is a consequence of different energy gaps between two rotational levels of themolecules.

The results reported here such as the flattened velocity profiles, the difference in laminar–turbulent transition and
the greater stability of the flow in a circular pipe apparently reflect the presence of the molecular parameter in the new
momentum transport equation.

2. Newmomentum transport equation

Based on the second- and third-order fluid equations with molecular parameter b representing inelastic interactions
among the molecules of the fluid derived in Ref. [1] from the Boltzmann kinetic equation using projection–perturbation
formalism, we adopt an incompressible momentum transport equation of the form
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with ε ∈ 〈0, 1〉 as a new dimensionless parameter. Eq. (1) reduces to the second-order equation for ε = 0 and reduces
to the third-order equation for ε = 1. For a value of ε between 0 and 1, Eq. (1) is a good approximate of the higher-order
equations. A justification comes from besides its utility, also from the fact that the Taylor expansion of the propagator G in
Ref. [1] is an alternating series. As a result the time development of the velocity profiles of the flow are oscillating around the
solution of the exact momentum transport equation as one raises the order of the approximate equation. The oscillations
would diminish with raising the order. Specifically for the time development of the velocity profiles in the Poiseuille flow,
mean velocities are decreasing in even orders while increasing in odd orders in time, as can be seen in numerical solutions
of the second- and third-order equation.

3. Application to plane and circular Poiseuille flow and numerical tests

If one differentiates Eq. (1) four times with respect to time, it reduces to a fifth-order nonlinear equation for the flow
between two flat plates with distance L apart, and with configuration where EU = (U(z, t), 0, 0)
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Repeating the procedure for the flow in circular pipe of radius R with the configuration where EU = (0, 0,U(r, t)), in
cylindrical coordinates we have

1
ν
r2

∂5U
∂t5

− r2
∂6U

∂r2∂t4
− r

∂5U
∂r∂t4

−
2b
mν

(
r2

∂3U
∂r2∂t

+ r
∂2U
∂r∂t

)

+ ε
4!2b
m2ν

[
3r2

∂U
∂r

∂2U
∂r2

+ 3r
(

∂U
∂r

)2

+ r2U
∂3U
∂r3

+ rU
∂2U
∂r2

]
= 0. (3)

3.1. Second-order equations (ε = 0)

Eq. (2) for the plane Poiseuille flow reduces to

1
ν

∂4U
∂t4

−
∂5U
∂t3z2

−
2b
mν

∂2U
∂z2

= 0 (4)

while Eq. (3) for the flow in circular pipe reduces to
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