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a b s t r a c t

The thermodynamics of the unitary (normalized spin) quantum and classical Ising
models with skew magnetic field, for |J|β . 0.9, is derived for the ferromagnetic and
antiferromagnetic cases. The high-temperature expansion (β-expansion) of the Helmholtz
free energy is calculated up to order β7 for the quantum version (spin S ≥ 1/2) and up to
order β19 for the classical version. In contrast to the S = 1/2 case, the thermodynamics of
the transverse Ising and that of the XY model for S > 1/2 are not equivalent. Moreover,
the critical line of the T = 0 classical antiferromagnetic Ising model with skew magnetic
field is absent from this classical model, at least in the temperature range of |J|β . 0.9.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The one-dimensional Isingmodel is the simplest model with first-neighbor spin interactions. The exact thermodynamics
of the S = 1/2 model with longitudinal magnetic field was derived in 1925 by Ising in his original paper [1]. The case
of a transversal magnetic field was treated by Pfeuty [2] in 1970; in this case, many thermodynamical functions (e.g. the
specific heat and magnetization) of the ferromagnetic and antiferromagnetic cases are identical. In 1978, Fogedby [3]
discussed the behavior of the S = 1/2 ferromagnetic model with skew magnetic field (i.e., with both longitudinal and
transversal components) at T = 0 K. The corresponding S = 1/2 antiferromagnetic case had its phase diagram presented
by Ovchinnikov et al. [4] in 2003, who also showed that at T = 0 K a critical line exists for both the quantum model and its
classical limit.

Only recently Rojas et al. [5] calculated the high-temperature expansion (β-expansion), up to orderβ40, of the Helmholtz
free energy (HFE) of the arbitrary spin-S Ising model, where S = 1/2, 1, . . . ,∞ (classical limit), in the absence of external
magnetic field. In Ref. [6] we calculated the β-expansion of the HFE for the antiferro and ferromagnetic S = 1/2 Isingmodel
in a skew magnetic field, up to order β7. We also showed the equivalence of the transversal Ising model and the XY model,
both with S = 1/2.
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The current techniques of synthetization of magnetic materials allow the construction of ‘‘single chain magnets’’ [7–10],
with one-dimensional behavior. Due to the high spin in each chain site, those materials show a classical behavior. Some of
them can be well described, in some suitable interval of temperature, by the classical Ising model [10].

As to the β-expansion of the HFE for the quantum Ising model with skew magnetic field, a severe computational
limitation in reaching high orders in β is imposed by the non-commutative terms of the hamiltonian. In the present work,
we apply the method exposed in Ref. [11] to calculate the expansion of the HFE of the classical version of the model. The
order in β we have reached for the classical version is more than twice as much as that of the quantum version.

The objective of this paper is threefold: (i) to calculate the β-expansion of the HFE of the quantum and classical one-
dimensional Ising model in a skew constant magnetic field (with |J|β . 0.9) up to order β7 and β19, respectively, and
determine the minimum value of the spin-S for which the quantum model can be well approximated by its classical limit;
(ii) to check if the duality of the transversal Ising model and the XY model, valid for S = 1/2, still holds for higher values
of spin; (iii) to verify if for |J|β . 0.9 the classical antiferromagnetic Ising model in a skew magnetic field has any trace of
the critical line it exhibits at T = 0 K. The existence of analytical expansions makes it easier to fit experimental data and
determine the value of J for a given magnetic material.

In Section 2 we present the hamiltonian of the Ising model with normalized but otherwise arbitrary spin and the
main features of the β-expansion of its HFE. We also check if the spin-S transversal Ising model is equivalent to the
spin-S XY model for S > 1/2. In Section 3 we compare several thermodynamical functions of the antiferromagnetic and
ferromagnetic cases of the quantum and classical models, for |J|β . 0.9. In Section 4 the T = 0 K critical line of the classical
antiferromagnetic Ising model in a skew magnetic field is shown to be absent in the high-temperature regime. Section 5
contains our conclusions. In Appendix A the reader finds the expression of the β-expansion of the HFE for the quantum Ising
model with arbitrary normalized spin and skew magnetic field, up to order β5. In Appendix B we rewrite the hamiltonian
(1) in terms of the spherical angular coordinates that characterize the orientation of the classical normalized spin vector in
space, with respect to the chain axis; we also present the β-expansion up to order β8 of the HFE for the classical model.

2. The Ising model with arbitrary normalized spin and skewmagnetic field

Upon a suitable choice of the coordinates axes, the hamiltonian of the one-dimensional quantum Ising model with
arbitrary normalized spin-S and constant external magnetic field with arbitrary orientation is

H =

N∑
i=1

(
Jszi s

z
i+1 − hys

y
i − hzszi

)
, (1)

where syi and szi stand for the y- and z-components, respectively, of the arbitrary normalized spin operator, defined as Esi ≡
ESi√

S(S+1)
, i ∈ {1, 2 . . .N}. The components of ESi are the spin-S matrices, with norm ‖ES‖2

= S(S +1), S = 1/2, 1, 3/2, . . . ,∞.
The chain has N spatial sites and satisfies periodic spatial boundary conditions. The coupling strength J between first-

neighbor z-components of spin can either be positive (antiferromagnetic case) or negative (ferromagnetic case). Due to
the rotational symmetry of the hamiltonian with respect to the z-axis (the easy-axis), the most general constant external
magnetic field that we must consider is: h = hy ȷ̂ + hz k̂, where hy and hz are constants.

By taking the limit S → ∞ in Eq. (1) we recover the classical version of the model; its corresponding thermodynamics
is finite. When Eq. (1) is written in terms of the non-normalized operators Syi and Szi , the coupling constant becomes
J ′ = J/S(S + 1) and the components of the magnetic field are h′

y = hy/
√
S(S + 1) and h′

z = hz/
√
S(S + 1) [5,12].

In the present work, the method exposed in Ref. [11] is applied to the quantum hamiltonian (1) for arbitrary normalized
spin-S in order to calculate the β-expansion of its HFE up to order β7, in the thermodynamical limit (N → ∞). One is
reminded that S(S + 1), the squared norm of spin at each site, is a constant of motion of the system; it turns out that
each coefficient in the β-expansion of the HFE is a polynomial of (m − 1)th degree in [S(S + 1)]−1, i.e., of the form∑m−1

k=0 Ck [S(S + 1)]−k, where the Ck’s are functions of the parameters of the model. We have calculated the HFE for nine
distinct values of spin, namely, S = 1/2, 1, 3/2, . . . , 9/2, so that fitting the coefficients of the series allowed us to determine
the series for arbitrary values of spin. The whole expression of the HFE is too large; Appendix A shows this expansion up
to order β5 only. (The authors would be glad to send the complete expression to the interested reader, upon request.) By
letting hy = 0 in Eq. (A.1) we recover the expansion, up to order β5, obtained from the XYZ model for Jx = Jz = D = 0 in
Ref. [13].

The HFE of the classical model can be obtained from (A.1) by taking the limit S → ∞. A different way to obtain the
same result is to apply the method of Ref. [11] directly to the hamiltonian (B.2), where the components of the classical spins
are given by Eqs. (B.1). All the terms in this classical hamiltonian are c-numbers, thus simplifying the computational task
and allowing us to calculate the β-expansion of its HFE up to order β19. This expression is also very lengthy and is shown
in Appendix B up to order β8 only. (For the complete expression, the interested reader is welcome to contact the authors.)
Ref. [14] presents a survey of the method applied here.

The expansions (A.1) (for the quantummodels) and (B.3) (for the classical model) are equally valid for the ferromagnetic
(J < 0) and antiferromagnetic (J > 0) cases and have the following features:

1. they are even functions of hy and hz , reflecting the rotation symmetry of the system with respect to the easy-axis;
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