Contents lists available at [ScienceDirect](http://www.elsevier.com/locate/physa)

Physica A

journal homepage: www.elsevier.com/locate/physa

Thermodynamics of the quantum and classical Ising models with skew magnetic field

E.V. Corrê[a](#page-0-0) Silva ª, James E.F. Skea ^{[b](#page-0-1)}, Onofre Rojas ^{[c](#page-0-2)}, S.M. de Souza ^c, M.T. Thomaz ^{[d,](#page-0-3)}*

^a Universidade do Estado do Rio de Janeiro, Estrada Resende-Riachuelo, s/nº, Morada da Colina, CEP 27523-000, Resende-RJ, Brazil

^b *Grupo de Física Matemática e Computacional, Departamento de Física Teórica, Instituto de Física, Universidade do Estado do Rio de Janeiro, R. São Francisco Xavier 524, CEP- 20559-900, Rio de Janeiro-RJ, Brazil*

^c *Departamento de Ciências Exatas, Universidade Federal de Lavras, Caixa Postal 3037, CEP 37200-000, Lavras-MG, Brazil*

^d Instituto de Física, Universidade Federal Fluminense, Av. Gal. Milton Tavares de Souza s/nº, CEP 24210-346, Niterói-RJ, Brazil

ARTICLE INFO

Article history: Received 19 February 2008 Received in revised form 13 May 2008 Available online 28 May 2008

PACS: 75.10.Jm 05.30.-d 05.50.+q *Keywords:*

Quantized spin models Classical spin models Statistical mechanics Ising model High-temperature expansion

1. Introduction

a b s t r a c t

The thermodynamics of the unitary (normalized spin) quantum and classical Ising models with skew magnetic field, for $|J|\beta \leq 0.9$, is derived for the ferromagnetic and antiferromagnetic cases. The high-temperature expansion (β -expansion) of the Helmholtz free energy is calculated up to order β^7 for the quantum version (spin $S \geq 1/2$) and up to order β^{19} for the classical version. In contrast to the $S = 1/2$ case, the thermodynamics of the transverse Ising and that of the *XY* model for *S* > 1/2 are *not* equivalent. Moreover, the critical line of the $T = 0$ classical antiferromagnetic Ising model with skew magnetic field is absent from this classical model, at least in the temperature range of $|J|\beta \leq 0.9$. © 2008 Elsevier B.V. All rights reserved.

The one-dimensional Ising model is the simplest model with first-neighbor spin interactions. The exact thermodynamics of the *S* = 1/2 model with longitudinal magnetic field was derived in 1925 by Ising in his original paper [\[1\]](#page--1-0). The case of a transversal magnetic field was treated by Pfeuty [\[2\]](#page--1-1) in 1970; in this case, many thermodynamical functions (e.g. the specific heat and magnetization) of the ferromagnetic and antiferromagnetic cases are identical. In 1978, Fogedby [\[3\]](#page--1-2) discussed the behavior of the *S* = 1/2 ferromagnetic model with skew magnetic field (i.e., with both longitudinal and transversal components) at *T* = 0 K. The corresponding *S* = 1/2 antiferromagnetic case had its phase diagram presented by Ovchinnikov et al. [\[4\]](#page--1-3) in 2003, who also showed that at $T = 0$ K a critical line exists for both the quantum model and its classical limit.

Only recently Rojas et al. [\[5\]](#page--1-4) calculated the high-temperature expansion (β -expansion), up to order β^{40} , of the Helmholtz free energy (HFE) of the arbitrary spin-*S* Ising model, where $S = 1/2, 1, \ldots, \infty$ (classical limit), in the absence of external magnetic field. In Ref. [\[6\]](#page--1-5) we calculated the β-expansion of the HFE for the antiferro and ferromagnetic *S* = 1/2 Ising model in a skew magnetic field, up to order β^7 . We also showed the equivalence of the transversal Ising model and the *XY* model, both with $S = 1/2$.

[∗] Corresponding author. Tel.: +55 21 2629 5807; fax: +55 21 2629 5887. *E-mail address:* mtt@if.uff.br (M.T. Thomaz).

^{0378-4371/\$ –} see front matter © 2008 Elsevier B.V. All rights reserved. [doi:10.1016/j.physa.2008.05.033](http://dx.doi.org/10.1016/j.physa.2008.05.033)

The current techniques of synthetization of magnetic materials allow the construction of ''single chain magnets'' [\[7–10\]](#page--1-6), with one-dimensional behavior. Due to the high spin in each chain site, those materials show a classical behavior. Some of them can be well described, in some suitable interval of temperature, by the classical Ising model [\[10\]](#page--1-7).

As to the β -expansion of the HFE for the quantum Ising model with skew magnetic field, a severe computational limitation in reaching high orders in β is imposed by the non-commutative terms of the hamiltonian. In the present work, we apply the method exposed in Ref. [\[11\]](#page--1-8) to calculate the expansion of the HFE of the classical version of the model. The order in β we have reached for the classical version is more than twice as much as that of the quantum version.

The objective of this paper is threefold: (i) to calculate the β -expansion of the HFE of the quantum and classical onedimensional Ising model in a skew constant magnetic field (with [J| $\beta~\lesssim~0.9$) up to order β^7 and β^{19} , respectively, and determine the minimum value of the spin-*S* for which the quantum model can be well approximated by its classical limit; (ii) to check if the duality of the transversal Ising model and the *XY* model, valid for $S = 1/2$, still holds for higher values of spin; (iii) to verify if for *J*/*β* \leq 0.9 the classical antiferromagnetic Ising model in a skew magnetic field has any trace of the critical line it exhibits at $T = 0$ K. The existence of analytical expansions makes it easier to fit experimental data and determine the value of *J* for a given magnetic material.

In Section [2](#page-1-0) we present the hamiltonian of the Ising model with normalized but otherwise arbitrary spin and the main features of the β-expansion of its HFE. We also check if the spin-*S* transversal Ising model is equivalent to the spin-*S XY* model for *S* > 1/2. In Section [3](#page--1-9) we compare several thermodynamical functions of the antiferromagnetic and ferromagnetic cases of the quantum and classical models, for $|J|\beta \leq 0.9$. In Section [4](#page--1-10) the *T* = 0 K critical line of the classical antiferromagnetic Ising model in a skew magnetic field is shown to be absent in the high-temperature regime. Section [5](#page--1-11) contains our conclusions. In [Appendix A](#page--1-12) the reader finds the expression of the β -expansion of the HFE for the quantum Ising model with arbitrary normalized spin and skew magnetic field, up to order β^5 . In [Appendix B](#page--1-13) we rewrite the hamiltonian [\(1\)](#page-1-1) in terms of the spherical angular coordinates that characterize the orientation of the classical normalized spin vector in space, with respect to the chain axis; we also present the β -expansion up to order β^8 of the HFE for the classical model.

2. The Ising model with arbitrary normalized spin and skew magnetic field

Upon a suitable choice of the coordinates axes, the hamiltonian of the one-dimensional quantum Ising model with arbitrary normalized spin-*S* and constant external magnetic field with arbitrary orientation is

$$
\mathbf{H} = \sum_{i=1}^{N} \left(I s_i^z s_{i+1}^z - h_y s_i^y - h_z s_i^z \right), \tag{1}
$$

where s_i^y and s_i^z stand for the *y*- and *z*-components, respectively, of the *arbitrary normalized spin operator*, defined as $\vec{s}_i \equiv$ $\frac{\vec{S}_i}{\sqrt{S(S+1)}}$, $i \in \{1,2\ldots N\}$. The components of \vec{S}_i are the spin-S matrices, with norm $\|\vec{S}\|^2 = S(S+1), S = 1/2, 1, 3/2, \ldots, \infty$.

The chain has *N* spatial sites and satisfies periodic spatial boundary conditions. The coupling strength *J* between firstneighbor *z*-components of spin can either be positive (antiferromagnetic case) or negative (ferromagnetic case). Due to the rotational symmetry of the hamiltonian with respect to the *z*-axis (the easy-axis), the most general constant external magnetic field that we must consider is: $\mathbf{h} = h_y \hat{\jmath} + h_z \hat{k}$, where h_y and h_z are constants.

By taking the limit $S \to \infty$ in Eq. [\(1\)](#page-1-1) we recover the classical version of the model; its corresponding thermodynamics is finite. When Eq. [\(1\)](#page-1-1) is written in terms of the non-normalized operators S_i^y and S_i^z , the coupling constant becomes $J'=J/S(S+1)$ and the components of the magnetic field are $h'_y=h_y/\sqrt{S(S+1)}$ and $h'_z=h_z/\sqrt{S(S+1)}$ [\[5](#page--1-4)[,12\]](#page--1-14).

In the present work, the method exposed in Ref. [\[11\]](#page--1-8) is applied to the quantum hamiltonian [\(1\)](#page-1-1) for arbitrary normalized spin-S in order to calculate the *β*-expansion of its HFE up to order β^7 , in the thermodynamical limit ($N \to \infty$). One is reminded that *S*(*S* + 1), the squared norm of spin at each site, is a constant of motion of the system; it turns out that each coefficient in the β -expansion of the HFE is a polynomial of $(m-1)$ th degree in $[S(S + 1)]^{-1}$, i.e., of the form $\sum_{k=0}^{m-1} C_k$ [*S*(*S* + 1)]^{-*k*}, where the *C_k*'s are functions of the parameters of the model. We have calculated the HFE for nine distinct values of spin, namely, $S = 1/2, 1, 3/2, \ldots, 9/2$, so that fitting the coefficients of the series allowed us to determine the series for arbitrary values of spin. The whole expression of the HFE is too large; [Appendix A](#page--1-12) shows this expansion up to order β^5 only. (The authors would be glad to send the complete expression to the interested reader, upon request.) By letting $h_y = 0$ in Eq. [\(A.1\)](#page--1-15) we recover the expansion, up to order β^5 , obtained from the *XYZ* model for $J_x = J_z = D = 0$ in Ref. [\[13\]](#page--1-16).

The HFE of the classical model can be obtained from [\(A.1\)](#page--1-15) by taking the limit $S \to \infty$. A different way to obtain the same result is to apply the method of Ref. [\[11\]](#page--1-8) directly to the hamiltonian [\(B.2\),](#page--1-17) where the components of the classical spins are given by [Eqs. \(B.1\).](#page--1-18) All the terms in this classical hamiltonian are *c*-numbers, thus simplifying the computational task and allowing us to calculate the β -expansion of its HFE up to order β^{19} . This expression is also very lengthy and is shown in [Appendix B](#page--1-13) up to order β^8 only. (For the complete expression, the interested reader is welcome to contact the authors.) Ref. [\[14\]](#page--1-19) presents a survey of the method applied here.

The expansions [\(A.1\)](#page--1-15) (for the quantum models) and [\(B.3\)](#page--1-20) (for the classical model) are equally valid for the ferromagnetic $(J < 0)$ and antiferromagnetic $(J > 0)$ cases and have the following features:

1. they are even functions of *h^y* and *h^z* , reflecting the rotation symmetry of the system with respect to the easy-axis;

Download English Version:

<https://daneshyari.com/en/article/977902>

Download Persian Version:

<https://daneshyari.com/article/977902>

[Daneshyari.com](https://daneshyari.com)