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a b s t r a c t

In the light of the optimal velocity model, a two velocity difference model for a car-
following theory is put forward considering navigation inmodern traffic. To our knowledge,
the model is an improvement over the previous ones theoretically, because it considers
more aspects in the car-following process than others. Then we investigate the property
of the model using linear and nonlinear analyses. The Korteweg–de Vries equation (for
short, the KdV equation) near the neutral stability line and the modified Korteweg–de
Vries equation (for short, the mKdV equation) around the critical point are derived by
applying the reductive perturbation method. The traffic jam could be thus described by
the KdV soliton and the kink–anti-kink soliton for the KdV equation and mKdV equation,
respectively. Numerical simulations are made to verify the model, and good results are
obtained with the new model.

© 2008 Published by Elsevier B.V.

1. Introduction

Car-following models were proposed for the description of interacting driver–vehicle units. They have not only been of
great importance with regard to an autonomous cruise control system, but also as important evaluation tools for intelligent
transportation system strategies since the 1990s. And car-following theories have receivedmuch research interest. They are
based on the assumption that each driver reacts in some specific fashion to a stimulus from the vehicle ahead of him.

In 1995, Bando et al. proposed a very attractive microscopic traffic model called the optimal velocity model (for short,
OVM) [1]. It was based on the idea that each vehicle has an optimal velocity, which depends on the following distance of the
preceding vehicle. It is based on the acceleration equation

d2xj(t)

dt2
= a

[
V(1xj(t)) −

dxj(t)
dt

]
, (1)

where xj(t) is the position of car j at time t, 1xj(t) ≡ xj+1(t) − xj(t) is the headway between car j and car j + 1 at time t, a is
the sensitivity of a driver, and V is the optimal velocity function. Despite its simplicity and its few parameters, the OVM can
describe many properties of real traffic flows, such as the instability of traffic flow, the evolution of traffic congestion, and
the formation of stop-and-go waves. Helbing and Tilch [2] carried out a calibration of the OVMwith respect to the empirical
data. They adopted the following optimal velocity function

V(1xj(t)) = V1 + V2 tanh[C1(1xj(t) − lc) − C2], (2)
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Table 1
δt and cj in different models

Model δt (s) cj (km/h)

OVM (a = 0.85 s−1,λ = 0 s−1) 1.6 16.65
GFM (a = 0.41 s−1,λ = 0.5 s−1) 2.2 12.11
FVDM (a = 0.41 s−1,λ = 0.5 s−1) 1.4 19.03
TVDM (a = 0.41 s−1,λ = 0.5 s−1) 1.5 17.76

where lc = 5 m is the length of the vehicles. The parameter values are

a = 0.85 s−1, V1 = 6.75 m/s, V2 = 7.91 m/s, C1 = 0.13 m−1, C2 = 1.57.

The comparison with the empirical data shows that OVM encountered the problems of too high acceleration and unrealistic
deceleration. So Helbing and Tilch presented a generalized force model (for short, GFM) [2] to solve this problem. The
governing equation is

d2xj(t)

dt2
= a

[
V(1xj(t)) −

dxj(t)
dt

]
+ λΘ(−1v)(1v), (3)

where Θ is the Heaviside function, λ is a sensitivity coefficient different from a. But GFM cannot describe the delay time δt
and the kinematic wave speed at jam density cj properly (see Table 1). After that, Jiang andWu put forward the full velocity
difference model (for short, FVDM) [3]. The formula of FVDM reads

d2xj(t)

dt2
= a

[
V(1xj(t)) −

dxj(t)
dt

]
+ λ1v. (4)

Since empirical deceleration and acceleration are limited between the region [−3 m/s2, 4 m/s2] [2], the FVDM has too high
deceleration (see Fig. 3).

Recently, based on applying the Intelligent Transportation System (for short, ITS), cooperative driving models related
to microscopic car-following model and macroscopic lattice hydrodynamic model were investigated by the authors [4,5],
where ITS applicationmeant that drivers could receive information of other vehicles on roads, and then adjust the velocities
of their own vehicles. In light of this information, it is possible to improve the stability of traffic flow and suppress the
appearance of traffic jams. In addition the KdV soliton and the kink–antikink soliton appearing as traffic jams in distinct
regions such as a metastable region and an unstable region have been studied by a few researchers [4–9], these solitons
correspond to the solutions of KdV and mKdV equations respectively.

In order to improve the OVM and considering the ITS application, we put forward a new model taking into account
the velocity difference 1vn and 1vn+1, where 1vn ≡ vn+1 − vn. The linear analysis is conducted. We investigated the
density waves in the metastable and unstable regions and derived the KdV and mKdV equations. By using the conclusion in
paper [10], we obtained the KdV and kink–antikink soliton solutions quickly.

2. Model

With the rapid development of modern traffic, ITS plays an important role. By using such navigation, drivers can obtain
the information that they need. In accordance with the above concept, on the basis of OVM, taking both 1vn and 1vn+1 into
account, we obtain a more useful model called the two velocity difference model (for short, TVDM), one whose dynamics
equation is

d2xj(t)

dt2
= a

[
V(1xj(t)) −

dxj(t)
dt

]
+ λG(1vn,1vn+1), (5)

we select the parameters as that of GFM. G(·) is a generic, monotonically increasing function, and we assume a linear form
as

G(1vn,1vn+1) = p1vn + (1 − p)1vn+1, (6)

where p is theweighting value. In the later simulation,we select p = 0.86, forwe know that the influence of the vehicle ahead
on the vehicle motion reduces gradually as the distance between the considered vehicle and the vehicle ahead increases.
Also, the proper value of p could lead to desirable results.

Now, we apply TVDM to simulate the car motion under a traffic signal and examine certain properties of TVDM. At first, a
traffic signal is red and all cars are waiting with a headway of 7.4m, at which the optimal velocity is zero. Then at time t = 0,
the signal changes to green and cars start. We define the delay time of car motion by δt as that in FVDM, which is related to
the weighting value p. Then, we can estimate the kinematic wave speed at jam density cj = 7.4/δt. For comparison, we use
the same parameters as those in FVDM. The simulation results are shown in Fig. 1 and Table 1.

From Table 1, we can see that the observed δt is of the order of 1 s, just as Bando et al. [11] pointed out and cj ranges
between [17 km/h, 23 km/h] [12]. Therefore, TVDM is successful in anticipating the two parameters.
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