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Abstract

We derive an exact representation of the topological effect on the dynamics of sequence processing neural networks within
signal-to-noise analysis. A new network structure parameter, loopiness coefficient, is introduced to quantitatively study the loop
effect on network dynamics. A large loopiness coefficient means a high probability of finding loops in the networks. We develop
recursive equations for the overlap parameters of neural networks in terms of their loopiness. It was found that a large loopiness
increases the correlation among the network states at different times and eventually reduces the performance of neural networks.
The theory is applied to several network topological structures, including fully-connected, densely-connected random, densely-
connected regular and densely-connected small-world, where encouraging results are obtained.
c© 2008 Elsevier B.V. All rights reserved.
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Starting with the pioneering work of modelling complex networks [1,2], the research area related to complex
networks has been growing very fast. In parallel with studies of their structural properties, there has been a growing
interest in dynamic systems defined on networks, for example, synchronization and collective dynamics, epidemic
spreading, cascading failures, opinion formation, also various strategic games and some physical models such as the
Ising model (see Ref. [3] and Refs. therein).

Neural assemblies (i.e. local networks of neurons transiently linked by selective interactions) are considered to
be largely distributed and linked to form a web-like structure in the brain. Many researchers suggest that neural
connectivity is far more complex than the random graph. The cortical neural networks of Caenorhabditis elegans and
cat were reported to be small-world (SW) and scale-free (SF), respectively [1,4]. It is very important to understand
how the complex neural wiring architecture is related to brain functions With the same average connections, a Hopfield
network with random topology was reported to be more efficient for storage and recognition of patterns than either an
SW network or a regular network [5,6]. For SF connections, with the same number of synapses, Torres et al. found
that the capacity is larger than the storage of the highly diluted random Hopfield networks [7]. Using a Monte-Carlo
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Fig. 1. Left: the first-order loopiness coefficient, L1, means the probability of connectivity between k and i when j is connected to i and k is
connected to j . Middle: the second-order loopiness coefficient L2. Right: the third-order loopiness coefficient L3.

method to lower the clustering coefficient smoothly with the degree of each neuron kept unchanged, Kim found that
the networks with lower clustering exhibit much better performance [8].

It is well known that the equilibrium properties of fully-connected Hopfield networks have been extensively
studied using spin-glass theory, especially the replica method [9–11]. The dynamics of fully-connected Hopfield
models with static patterns and sequence patterns were widely studied using generating functional analysis [12,13].
As a simple relaxation of the biological unrealistic fully-connected model, various randomly diluted models were
studied, including an extreme diluted model [14,15], a finite diluted model [16,17] and a finite connection model [18].
However, in the case of complex network topology, as far as we know, there are hardly any theoretical studies for
dynamics or statics.

In this paper we use signal-to-noise analysis to study the effect of topology on the transient dynamics of sequence
processing neural networks. For mathematical convenience we only focus on sequence processing models here and
the relationship between our results and Hopfield models will be discussed.

The topological effects on neural networks mainly come from loops of topology [19]. In the case of so-called
extremely diluted structures (limN→∞ k̄−1

= limN→∞ k̄/N = 0), the average loop length is very big, i.e. logk−1 N ,
so the number of short loops, such as triangles or quadrangles, in the networks will be very small and the effect caused
by short loops can be neglected. The dynamics of networks in this case is easy to study because at different time steps
each spin is uncorrelated [14]. By contrast, if such small loops do exist, the correlations and feedbacks in a network
will lead to more complicated dynamics.

In order to quantitatively present the effect of loops we define a new parameter, the loopiness coefficient, to
represent the probability of finding loops in the network. The definition is shown in Fig. 1. In the left triangle spin
j is connected to spin i and spin k is connected to spin j . We define the probability that k is connected to i as the
first-order loopiness coefficient, L1. Similarly, the nth-order loopiness coefficient, Ln , denotes the linking probability
between two vertices to form a loop with n + 2 edges.

We now study a sequence processing model consisting of N → ∞ Ising-type neurons si (t) ∈ {+1, −1}. The
neurons update their states simultaneously, with the following probabilities,

Prob[si (t + 1) |hi (t)] =
eβsi (t+1)hi (t)

2 cosh (βhi (t))
, (1)

where the local field hi (t) =
∑N

j=1 Ji j s j (t), and β is the inverse temperature. For the transfer function g (·), we
denote by si (t + 1) = g(hi (t)).

Let us store p = αN random patterns ξµ
=

(
ξ

µ
1 , . . . , ξ

µ
N

)
in the network, where α is the loading ratio. So the

interaction matrix Ji j =
ci j
Nc

∑p
µ=1 ξ

µ+1
i ξ

µ
j is chosen to retrieve the patterns as ξ1

→ ξ2
→ · · · → ξ p

→ ξ1

(note that ξ p+1
= ξ1), where ci j is the adjacency matrix (ci j = 1 if j is connected to i , ci j = 0 otherwise) [20].

Consequently, the degree of spin i is ki =
∑

j∈Ti
ci j =

∑
j ci j , where Ti is the set of spin j connected with i . In this

work, for studying the role of loopiness, we only consider ki ≈ k̄ = Nc. We assume that this property holds for dense
connected random networks, dense connected SW networks, and dense connected regular networks.

For any pattern ξ ν , the order parameter is mν (t) =
1
N

∑
ξ ν

i si (t) which represents the overlap between s (t) and
the condensed pattern ξ ν . The local field in neuron i is described by

hi (t) =
1

Nc

∑
j∈Ti

ξ ν+1
i ξ ν

j s j (t) + Zi (t), (2)
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