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Abstract

We numerically study two conservative two-dimensional maps, namely the baker map (whose Lyapunov exponent is

known to be positive), and a typical one (exhibiting a vanishing Lyapunov exponent) chosen from the generalized shift

family of maps introduced by C. Moore [Phys. Rev. Lett. 64 (1990) 2354] in the context of undecidability. We calculate the

time evolution of the entropy Sq � ð1�
PW

i¼1 p
q
i Þ=ðq� 1Þ (S1 ¼ SBG � �

PW
i¼1 pi ln pi). We exhibit the dramatic effect

introduced by numerical precision. Indeed, in spite of being area-preserving maps, they present, well after the initially

concentrated ensemble has spread virtually all over the phase space, unexpected pseudo-attractors (fixed-point like for the

baker map, and more complex structures for the Moore map). These pseudo-attractors, and the apparent time (partial)

reversibility they provoke, gradually disappear for increasingly large precision. In the case of the Moore map, they are

related to zero Lebesgue-measure effects associated with the frontiers existing in the definition of the map. In addition to

the above, and consistent with the results by V. Latora and M. Baranger [Phys. Rev. Lett. 82 (1999) 520], we find that the

rate of the far-from-equilibrium entropy production of baker map numerically coincides with the standard

Kolmogorov–Sinai entropy of this strongly chaotic system.
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1. Introduction

Dynamical systems which present exponential sensitivity to the initial conditions are called chaotic (also

called strongly chaotic). Indeed, almost all orbits are unpredictable for any finite-precision calculation, even if
the evolution was purely deterministic. But dynamical systems at the edge of chaos are also somehow
unpredictable, they typically exhibit a power-law sensitivity to the initial conditions, and are called weakly

chaotic. For both cases, the sensitivity x to the initial conditions is typically given [1–3] by

xðtÞ � lim
Dxð0Þ!0

jDxðtÞj
jDxð0Þj

¼ ½1þ ð1� qÞlqt�1=ð1�qÞ, (1)
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where DxðtÞ is the time-dependent discrepancy between two initially close trajectories. The coefficient lq is a
generalized Lyapunov exponent, and q is an index associated with the entropy [4]

Sq �
1�

PW
i¼1p

q
i

q� 1
q 2 R;S1 ¼ SBG � �

XW
i¼1

pi ln pi

 !
, (2)

where BG stands for Boltzmann–Gibbs. This entropy is at the basis of nonextensive statistical mechanics, which
has received many applications for complex systems. Eq. (1) recovers, in the q ¼ 1 limit, the usual exponential
divergence x ¼ el1t (l1 being, say for the simple one-dimensional case, the standard Lyapunov exponent). If
q ¼ 0, we obtain the simple result x / t. In general, qa1 yields a power-law dependence.

A meaningful statistical description is possible even when the maximal Lyapunov exponent vanishes. This
fact has been illustrated in the Casati–Prosen triangle map [5], a mixing and ergodic conservative system which
presents the extreme case of linear instability [5]. This map satisfies that, in the infinitely fine graining limit
(i.e., W !1), the q-entropy increases linearly with time only for the value of the entropic index q ¼ 0 [6]; its
slope is expected to coincide with the q-generalized Kolmogorov–Sinai entropy rate kq [1]. Furthermore, this
value is expected to coincide with the q-generalized Lyapunov coefficient; in other terms, a Pesin-like equality
[7] is expected to hold for generic q as well.

Conservative dynamical systems leading to entropic indices qa1 are certainly interesting. The case that we
have just mentioned, namely the Casati–Prosen map (for which q ¼ 0), is one such example. In the present
paper we study various aspects along this direction, possibly with q different from both unity and zero.

We are interested in studying the entropy production, i.e., the rate of increase of the q-entropy, of two-
dimensional maps and, if possible, to connect it with the Kolmogorov–Sinai entropy rate [8] k1, which is a
property defined for (strongly) chaotic dynamical systems. In this paper we present numerical results for the
non-dissipative baker map, and for one (from now on referred to as Moore map) of the shift-like dynamical
systems proposed by Moore [9]. The latter is expected to present a power-law sensitivity to the initial
conditions, i.e., qo1 (possibly qa0, in contrast with the Casati–Prosen map).

To evaluate the q-entropy of the system, we first partition the phase space into Wb1 little equal cells; we
then choose one of these cells and put within Nb1 random initial conditions. As time t evolves, the N points
spread over the phase space in such a way that, at each time t, we have a set of numbers fNiðtÞg

(
PW

i¼1NiðtÞ ¼ N; 8t), so that NiðtÞ is the number of points inside the ith cell. Then, for each value of t, we can
consider a set of probabilities fpiðtÞ � NiðtÞ=Ng to find Ni points in the ith cell. For achieving a numerically
meaningful definition of the probabilities pi, the condition NbW has to be fulfilled; we typically consider
N ¼ 10W . At t ¼ 0, all probabilities but one are zero, hence Sqð0Þ, calculated through Eq. (2), vanishes 8q. In
other words, before the system starts to evolve, we know all the information regarding the occupancy of the
phase space. As t evolves, information is lost and SqðtÞ starts to increase. In all cases, Sq will be bounded by
its corresponding equiprobability value ðSqÞmax ¼ ðW

1�q � 1Þ=ð1� qÞ, whose q ¼ 1 limit case yields lnW . The
q-entropy production is then defined as

Kq � lim
t!1

lim
W!1

lim
N!1

SqðtÞ

t
. (3)

In practice, we take values of ðN ;W ; tÞ large enough so that our numerical result for Kq becomes independent
from them.

Summarizing, we numerically study direct snapshots of the occupancy of the space phase, and the time
evolution of SqðtÞ. From these, we shall present that:

(i) K1 ¼ k1 for the baker map;
(ii) numerical precision plays a relevant role in the phase space occupancy and time evolution of SqðtÞ in both

baker and Moore maps;
(iii) the time evolution of Sq partially (but not completely) reflects the time evolution of the phase space

occupancy in both baker and Moore maps;
(iv) qa1 for the Moore map.
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