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Nonequilibrium states of driven disordered polymorphic solids
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Abstract

Condensed matter systems, when driven far from equilibrium, often exhibit a far more varied set of phases than their

equilibrium counterparts. The existence of non-equilibrium analogs of ‘solids’ and ‘liquids’ has been demonstrated earlier

in the context of models for driven disordered vortex lattices in superconductors. Here we study the effects of a structural

(polymorphic) transition in a driven two-dimensional crystal placed in a quenched random background. Such a

polymorphic crystal is shown to exhibit a complex sequence of unusual dynamical phases as the external drive is varied,

including some which have no analog in the undriven pure system. We propose that such states should be accessible in

experiments.
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1. Introduction

Many condensed matter systems are capable of existing in more than one crystalline form (polymorphs).
Even non-material lattices, such as Abrikosov flux-line lattices in the mixed state of type-II superconductors
[1] or Skyrmion lattices in quantum Hall systems [2] can transit between different (triangular and rectangular)
crystalline symmetries [3] as parameters such as the magnetic field are varied. Colloidal PMMA spheres coated
with a low-molecular weight polymer undergo a remarkable variety of solid–solid transformations in an
external field [4]. What is the effect of quenched disorder on the static and dynamical properties of such
systems? While the depinning and flow of periodic media over a quenched randomly pinned (disordered)
background has been extensively studied [1], the implications of an underlying structural transition remains
unexplored. Here we report recent results on the complex non-equilibrium phase behaviour exhibited by a
two-dimensional crystal driven across a disordered background, when the ground state of the crystal is tuned
through a square–triangular transition.

Our model solid is a two-dimensional system of particles interacting via two and three-body interactions [6].
In addition, particles also interact with a one-body substrate potential which acts as a quenched random
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background. The interaction Hamiltonian is:

Hint ¼ 1=2
X

iaj

V 2ðrijÞ þ 1=6
X

iajak

V3ðri; rj ; rkÞ þ
X

i

V dðriÞ,

where ri is the position vector of particle i, rij � jrijj � jrj � rij, V 2ðrijÞ ¼ v2ðs0=rijÞ
12 and V 3ðri; rj ; rkÞ ¼

v3½f ij sin
2
ð4yijkÞf jk þ permutations� [6]. The function f ij � f ðrijÞ ¼ ðrij � r0Þ

2 for rijo1:8s0 and 0 otherwise and
yijk is the angle between rji and rjk. The two-body (three-body) interaction favours a triangular (square) ground
state. Energy and length scales are set using v2 ¼ 1 and s0 ¼ 1. The three-body interaction, parametrized through
a single parameter v3, tunes the system across a square–triangular phase transition. The quenched random
background is modeled as a Gaussian random potential [7] VdðrÞ with zero mean and exponentially decaying
(short-range) correlations. The disorder variance is set to v2d ¼ 1 and its spatial correlation length is x ¼ 0:12.

Our system consists of 1600 particles in a square box with periodic boundary conditions, and at number
density r ¼ 1:1. In what follows, we chose a typical value v3 ¼ 6 that supports a square-symmetry in the
ground state. The system is subject to a constant force F ¼ fF x; 0g at a fixed temperature T and evolves
through standard Langevin dynamics; _ri ¼ vi and _vi ¼ f inti � avi þ Fþ ZiðtÞ. Here vi is the velocity, f

int
i the total

interaction force, and ZiðtÞ the random force acting on particle i. The zero-mean thermal noise ZiðtÞ is specified
by hZiðtÞZjðt

0Þi ¼ 2Tdijdðt� t0Þ with T ¼ 0:1, well below the equilibrium melting temperature of the system.
The unit of time t ¼ as20=v2, with a ¼ 1 the viscosity.

Configurations obtained through a simulated annealing procedure are the initial inputs to our Langevin
simulations. We evolve the system using a time step of 10�4t. The external force F x is ramped up from a
starting value of 0, with the system maintained at up to 108 steps at each Fx. Below a critical force Fc, the
system remains pinned to the substrate and above Fc it depins and starts to move. In the moving non-
equilibrium steady state we obtain a variety of phases: a moving liquid/glass phase, a moving anisotropic
hexatic glass phase, flowing triangular and square states ordered over the size of our simulation cell and a
dynamic coexistence regime between these ordered phases. Fig. 1 displays the static structure factors,
SðqÞ ¼

P
ij expð�iq � rijÞ, for the liquid, hexatic, and the drive-stabilized periodic phases. For a lower v3 that

supports a triangular ground state structure, the final non-equilibrium state is the moving triangular structure.

2. The depinning transition

For small Fx the solid is pinned. At Fx ¼ F c, the critical depinning force, the system undergoes a
discontinuous depinning transition which exhibits a prominent hysteresis behaviour (Fig. 2(middle)). This is
the plastic depinning transition, and the system above Fc changes to a liquid-like structure (Fig. 1(a)) and
flows plastically. The centre of mass velocity vCM of the system relaxes from zero to the steady-state value
which increases with further increase of the drive. The time relaxation of vCM at various driving forces is
shown in Fig. 2(left). The velocity distribution among the particles broadens and its width in this non-
equilibrium isotropic phase no longer reproduces the temperature of the stuck-phase (Fig. 2(right)). While the
velocity component along the drive direction averages to the steady-state vCM after depinning; the transverse
component distribution is centred around zero. The widths of the velocity distributions along the drive and
transverse direction are nearly similar in the liquid phase just at the depinning; but begin to deviate
considerably with increasing F x. In the co-moving frame, random disorder can be thought of as providing an
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Fig. 1. Structure factor SðqÞ for the plastic flow state (a), driven hexatic glass (b), moving triangle (c) and moving square solid phases (d) at

v3 ¼ 6:0 and Fx ¼ 10; 20; 60 and 140, respectively. To obtain SðqÞ, 50 independent configurations were used. The structure in (d) reflects

the presence of two mutually misoriented square crystallites.
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