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Abstract

The concept of exchange in strongly-correlated fermions is reviewed with emphasis on the generalization of the Heisenberg pair exchange

to higher order n-particle permutations. The ‘frustration’ resulting from competing ferromagnetic three-spin exchange and antiferromagnetic

two- and four-spin exchanges is illustrated on a two-dimensional model system: solid 3He films. Recent experimental results proving the

presence of significant four-spin exchange interactions in the CuO2 plaquettes of high Tc cuprates are reported.
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1. Historical introduction

The concept of exchange interactions in almost-

localized correlated fermions first appeared in the

pioneering papers of Heisenberg [1] and was formulated

in a more general mathematical way by Dirac [2,3].

Although the early papers by Dirac already contain the

general expression of the Hamiltonian in terms of

n-particle permutations, no attention was paid, up to

the sixties, to higher orders than the ‘pair-exchange’

Heisenberg term. Thouless [4] was the first to point out

that higher order exchanges as three- and four-spin cyclic

permutations might be important in quantum solids like
3He. But only ten years later, striking experimental

results on nuclear magnetism in the bcc phase of solid
3He, in the millikelvin range [5–7], were interpreted by

Hetherington, Delrieu and Roger through a ring-exchange

model with two-three-and four-particle interactions of

comparable magnitude [8–10]. From general consider-

ations put forward by Thouless, permutations of even

parity (like three-particle cycles) induce ferromagnetism

while odd permutations (pair and four-particle exchanges)

favor antiferromagnetism, and the striking phase diagram

of bcc solid 3He corresponds to a highly frustrated

quantum-spin system with competing three- and four-spin

permutations. During the last two decades a lot of

progress has been accomplished in the investigation of

solid 3He films adsorbed on graphite, a simple model

system exhibiting even more frustration since the

frustrated nature of ring-exchange interactions is

enhanced by the frustrated geometry of the triangular

lattice. The conceptual beauty of solid 3He lies in the

fact that the system is simple enough (the pair

interactions between 3He atoms are mainly of hard core

nature) to allow the calculation of exchange frequencies

from first principles [11] and a quantitative comparison

with experimental results.

The relevance of the multi-spin exchange concept is

not restricted to the physics of nuclear 3He spins. Delrieu

[12] suggested that three-spin exchange might be

dominant in the two-dimensional electron Wigner solid

near the quasi-classical limit, and this has been

corroborated through WKB calculations [13]. More

recent Monte-Carlo simulations have proved that compet-

ing three and four-spin exchange interaction should occur

near melting [14].

The first fourth-order t/U expansion of the one-band

Hubbard Hamiltonian in terms of four-spin interactions has

been published in 1977 by Takahashi [15]. Soon after the

discovery of high-Tc superconductors, Roger and Delrieu

[16] suggested, on the basis of an expansion of the three-

band Hubbard model, that four-spin exchange might be

significant in the CuO2 planes of cuprates. During the last

ten years many experimental results have revealed the

presence of four-spin exchange interactions in the Cu–O

plaquettes of cuprates [17–19] and copper-based spin-ladder

materials [20–23].
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2. Dirac formalism with illustration on the one-band

Hubbard model

Dirac formalism is introduced in the framework of

degenerate perturbation theory. The Hamiltonian is written

HZH0 CV, where H0 describes independent particles and V

is a perturbation. The ‘unperturbed’ degenerate ground-

states for N distinguishable particles can be written as

products of independent particle states:

jji Z ja1i
ð1Þ
ja2i

ð2Þ
ja3i

ð3Þ /jaN i
ðNÞ (1)

which means that the particle numbered (i) is in a state jaii.

Each of these states is itself a product of two kets

corresponding to the orbital and spin variables respectively:

j\aiiZjRiisii

jji Z jR1i
ð1Þ
js1i

ð1Þ /jRni
ðNÞ

jsN i
ðNÞ (2)

Hence jjiZjfRijxsi appears as a product of an orbital

wavefunction:

jfRi Z jR1i
ð1ÞjR2i

ð2Þ /jRN i
ðNÞ (3)

and a spin wavefunction:

jxsi Z js1i
ð1Þjs2i

ð2Þ /jsN i
ðNÞ (4)

Note that for the half-filled Hubbard model, jRii simply

represents the site occupied by the particle (i). The

permutation P of two particles can be expressed as a

product of two operators:

P Z PRPs (5)

PR acting on orbitals and Ps acting on spin variables. If the

Hamiltonian does not depend explicitly on the spin, we can

as a first step concentrate on the orbital part of the wave

function and solve the eigenvalue problem:

HjfRi Z EjfRi (6)

for the orbital wavefunction jfRi describing N distinguish-

able particles. The ground-state of the unperturbed part H0

of the Hamiltonian is N! fold degenerated and the

corresponding subspace U0 is spanned by the N! states:

PRjfRi Z jRn1
ið1ÞjRn2

ið2Þ /jRnN
iðNÞ (7)

where {n1, n2,., nN} represents a permutation P of the N

integers {1, 2,.,N}. We now apply degenerate pertur-

bation theory [25,26] to the perturbed Hamiltonian HZ
H0CV. At first order, the splitting of the N! degenerated

energy levels is given by the eigenvalues of the Hamiltonian

V(1) defined by its matrix elements:

V ð1Þ
a;b Z hfRjPR

a VPR
b jf

Ri (8)

where PR
a and PR

b are two permutations of the symmetric

group SN. Since V is invariant with respect to any

permutation, we can write:

V ð1Þ
a;b Z hfRjVPR

a PR
b jf

Ri Z hfRjVPRjfRi Z V ð1Þ
P

where PZPR
a PR

b ; and the eigenvalue problem, restricted to

the subspace U0 can be formally represented by the

Hamiltonian:

Hð1Þ ZK
X

PR2SN

V ð1Þ
P PR (9)

where the summation runs over permutations PR of the

symmetric group SN. This result extends straightforwardly

to higher order degenerate perturbation theory: the higher

orders are expressed in terms powers of V and projection

operator P0 on U0[25,26], and these operators commute with

permutation operators. Hence, at arbitrary order in

degenerate perturbation theory, we can write:

H zK
X

PR2SN

VPPR (10)

We now have to introduce the spin degrees of freedom an

express that the global wavefunction is completely

antisymmetric. As a general result from Group theory a

completely antisymmetric wave function can be expressed

by the following bilinear expression [27]:

jji Z
X
l;m

cl;mjf
R
l ijx

s
mi (11)

where jfR
l i represents a linear combination of different

permutations PR
a jf

Ri corresponding to a given irreducible

representation of the symmetry group schematized by a

Young diagram, while jxs
mi represents a linear combination

of permutation Ps
�a jx

si corresponding to the representation

associated with the ‘complementary’ Young diagram,

obtained by exchanging the lines and the columns. For

spin-1/2, a complete antisymmetrisation of the spins cannot

be realised over more than 2 variables, hence the

corresponding Young diagrams have at most two lines and

each diagram corresponds to a given value of the total spin

S. It is then possible to establish a correspondence between

the expression (10) of the Hamiltonian acting only on the

orbital variables with an equivalent Hamiltonian acting only

on the spin variables. Expressing the antisymmetry of the

wave function:

Pjji Z ðK1Þpjji (12)

where p is the parity of the permutation, we can write:

PRPsjji Z ðK1Þpjji (13)

and multiplying to the left by (PR)K1:

Psjji Z ðK1ÞpðPRÞK1jji (14)

Taking into account that in Eq. (10) PR and the inverse

permutation (PR)-1 appear with the same weight VP, the

Hamiltonian is written equivalently in spin space:

H zK
X

Ps2SN

ðK1ÞpVPPs (15)
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