

Available online at www.sciencedirect.com

JOURNAL OF PHYSICS AND CHEMISTRY

Journal of Physics and Chemistry of Solids 66 (2005) 109-114

www.elsevier.com/locate/jpcs

Theoretical study of local crystal structure in KZnF₃:Fe³⁺ system[★]

Huang Xiao-Fen^a, Kuang Xiao-Yu^{a,b,*}, Lu Wei^a

^aInstitute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China ^bInternational Centre for Materials Physics, Chinese Academy of Science, Shengyang 110016, China

Received 29 March 2004; revised 9 August 2004; accepted 18 August 2004

Abstract

An analysis of the relationship between the EPR trigonal-field parameters and the local crystal structure of KZnF₃:Fe³⁺ system is presented by diagonalizing the complete energy matrices for a d⁵ configuration ion in a trigonal crystal field. We propose a two-layer-ligand model, in which the ligands consist of six nearest-neighbor F⁻ ions in the first layer and eight next nearest-neighbor K⁺ ions in the second layer. The calculation indicates that the local structure distortion of KZnF₃:Fe³⁺ system is due to the displacement of a K⁺ ion along C_3 axis towards the Fe³⁺ ion, which leads to the shift of the F⁻ ions away from C_3 axis. By simulating the EPR low-symmetry parameters D and (a-F), the distorted angles between the Fe³⁺-F⁻ bonds and C_3 axis are determined, $\Delta\theta_1 = 2.58^{\circ}$, $\Delta\theta_2 = -1.4^{\circ}$ at room temperature (300 K) and $\Delta\theta_1 = 2.84^{\circ}$, $\Delta\theta_2 = -1.4^{\circ}$ at low temperature (77 K). Those results are in good agreement with the experimental findings $\Delta\theta_1 = 2.8 \pm 0.3^{\circ}$ and $\Delta\theta_2 = -1.1 \pm 0.3^{\circ}$.

© 2004 Published by Elsevier Ltd.

1. Introduction

As a typical ionic crystal, the perovskite fluoride KZnF₃ doped with transition metal ions such as Fe³⁺, Co²⁺, Cr³⁺ has been studied experimentally and theoretically by many workers [1–5]. J.J. Krebs and R.K. Jeck's experiment [1] shows that when the Fe³⁺ ions dope into KZnF₃, the Fe³⁺ ion will substitute for the Zn²⁺ ion, and the local structure of KZnF₃:Fe³⁺ is a cubic symmetry for the sufficiently low concentration of Fe³⁺ (\leq 100 ppm) and a trigonal symmetry for the high concentration (>100 ppm). The ENDOR spectra indicate that the local trigonal distortion along the [111] direction (i.e. the C_3 axis) may be described by angles of deviation between the Fe³⁺–F⁻ bonds and C_3 axis, by $\Delta\theta_1 = 2.8 \pm 0.3^{\circ}$ and $\Delta\theta_1 = -1.1 \pm 0.3^{\circ}$, respectively. The EPR experiment, which also supports the trigonal

E-mail address: zkwxx@263.net (K. Xiao-Yu).

distortion viewpoint, indicates that the spin Hamiltonian parameters of the Fe^{3+} ion in trigonal symmetry are $10^4a=$ 45.6 cm^{-1} , $10^4 D = 103.4 \text{ cm}^{-1}$, $10^4 (a - F) = 49.5 \text{ cm}^{-1}$ at the room temperature (T=300 K) and $10^4 a=49.7 \text{ cm}^{-1}$, $10^4D = 107.9 \text{ cm}^{-1}$, $10^4 (a-F) = 52.4 \text{ cm}^{-1}$ at low temperature (T=77 K). J.J. Krebs and R.K. Jeck [1] speculated that in KZnF₃:Fe³⁺ the trigonal distortion is due to the presence of a K⁺ vacancy that is the next-nearest neighbor of the Fe³⁺ ion along [111] direction (or along the C_3 axis). Based on the V_k -model Yu [2] has studied the EPR parameters a, D and (a-F) of the KZnF₃:Fe³⁺ system using a high order perturbation procedure. His results indicated that the V_k -model cannot simultaneously explain the EPR low-symmetry second-order parameter D and fourthorder parameter (a-F). In the present paper, the relationship between the local structure of the KZnF₃:Fe³⁺ system and the EPR low-symmetry parameters D and (a-F) will be studied using the diagonalization of the complete energy matrices. Our analysis will show that the two-layer-ligand model may satisfactorily explain both the local lattice distortion in KZnF₃:Fe³⁺ and the EPR experimental data.

^{*} This project was supported by National Natural Science Foundation of China.

^{*} Corresponding author. Address: Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China.

2. Theoretical analyses

When the concentration of the doping Fe^{3+} ions in $KZnF_3$: Fe^{3+} is more than 100 ppm, the local structure of Fe^{3+} in $KZnF_3$: Fe^{3+} has $C_{3\nu}$ symmetry [1]. The perturbation Hamiltonian for a d^5 configuration ion in trigonal symmetry can be written as

$$\hat{H} = \hat{H}_{ee} + \hat{H}_{so} + \hat{H}_{CF} = \sum_{i < i} e^2 / r_{i,j} + \zeta \sum_i l_i s_i + \sum_i V_i, \quad (1)$$

where the first term is the electron-electron interactions, the second term is the spin-orbit coupling interactions, and the third term is the ligand-field potentials, which can be expressed as

$$V_{i} = \gamma_{00} Z_{00} + \gamma_{20} r_{i}^{2} Z_{20}(\theta_{i}, \varphi_{i}) + \gamma_{40} r_{i}^{4} Z_{40}(\theta_{i}, \varphi_{i})$$

$$+ \gamma_{43}^{c} r_{i}^{4} Z_{43}^{c}(\theta_{i}, \varphi_{i}) + \gamma_{43}^{s} r_{i}^{4} Z_{43}^{s}(\theta_{i}, \varphi_{i}),$$

$$(2)$$

According to the perturbation Hamiltonian (1), for a d⁵ configuration ion two 84×84 energy matrices have been constructed in terms of the irreducible representations $\Gamma_4(\Gamma_5)$ and Γ_6 of C_3 point symmetry [6]. The matrix elements are functions of the Racah parameters B and C, the Trees correction α ,the spin–orbit coupling coefficient ζ , and the crystal field parameters B_{20} , B_{40} and B_{43}^c [7], which are generally defined as [8]

$$B_{20} = \sum_{\iota} G_2(\tau) K_2^0(\tau), \ B_{40} = \sum_{\iota} G_4(\tau) K_4^0(\tau),$$

$$B_{43}^c = \frac{\sqrt{35}}{140} \sum_{\iota} G_4(\tau) K_4^3(\tau),$$
(3)

where

$$K_2^0(\tau) = \frac{1}{2} (3\cos^2\theta_\tau - 1),$$

$$K_4^0(\tau) = \frac{1}{8} (35\cos^4\theta_\tau - 30\cos^2\theta_\tau + 3),$$
(4)

$$K_4^3(\tau) = 35\cos\theta_{\tau}\sin^3\theta_{\tau}\cos3\phi_{\tau}$$
.

In Eqs. (3) and (4), τ represents the τ th ligand, θ_{τ} , ϕ_{τ} represent the angular coordinates of the τ th ligand. For the special case of the point-charge model, $G_2(\tau)$ and $G_4(\tau)$ may be written as

$$G_2(\tau) = eq_{\tau}G^2(\tau), \ G_4(\tau) = eq_{\tau}G^4(\tau),$$
 (5)

where e and q_{τ} represent the charges of the electron and the τ th ligand, respectively, and $G^{k}(\tau)$ (k=2,4) are the integrals introduced by Gerloch and Slade [9]:

$$G^{k}(\tau) = \int_{0}^{R_{\tau}} R_{3d}^{2}(r) r^{2} \frac{r^{k}}{R^{k+1}} dr + \int_{R}^{\infty} R_{3d}^{2}(r) r^{2} \frac{R_{\tau}}{r^{k+1}} dr.$$
 (6)

According to the Van Vleck approximation for $G^k(\tau)$ integral, we have

$$G_2(\tau) = \frac{eq_{\tau}\langle r^2 \rangle}{R_{\tau}^3}, \ G_4(\tau) = \frac{eq_{\tau}\langle r^4 \rangle}{R_{\tau}^5}, \ \frac{G_2(\tau)}{G_4(\tau)} = \frac{\langle r^2 \rangle}{\langle r^4 \rangle} R_{\tau}^2. \tag{7}$$

As long as we know the Racah parameters B and C, the Trees correction α , the spin–orbit coupling coefficient ζ , and the crystal field parameters B_{20} , B_{40} , B_{43}^c of Fe³⁺ in KZnF₃:Fe³⁺,the optical spectra and the ground-state splitting of the system can be calculated, and then the relationship between the EPR parameters and the local lattice structure of the KZnF₃:Fe³⁺ system can be further studied.

The EPR spectra of a d⁵ configuration ion in trigonal symmetry may be analyzed by employing the spin Hamiltonian [10]:

$$\hat{H}_{s} = g\beta \vec{H} \cdot \vec{S} + D[S_{z}^{2} - S(S+1)/3] + a[S_{\xi}^{4} + S_{\eta}^{4} + S_{\zeta}^{4} - S(S+1)(3S^{2} + 3S-1)/5]/6 + F[35S_{z}^{4} - 30S(S+1)S_{z}^{2} + 25S_{z}^{2} - 6S(S+1) + 3S^{2}(2S+1)^{2}]/180,$$
(8)

where a is the cubic-crystal-field splitting parameter, D and F correspond to the low-symmetry second- and fourth-order components. From Eq. (8) the splitting energy levels in the ground state ${}^{6}A_{1}$ for a zero-magnetic field can be written as

$$E\left(\pm\frac{1}{2}\right) = D/3 - (a-F)/2 - \left[(18D+a-F)^2 + 80a^2\right]^{1/2}/6,$$

$$E\left(\pm\frac{3}{2}\right) = -2D/3 + (a-F),$$

$$E\left(\pm\frac{5}{2}\right) = D/3 - (a-F)/2 + \left[(18D+a-F)^2 + 80a^2\right]^{1/2}/6.$$
(9)

Then the ground-state splitting ΔE_1 and ΔE_2 can be expressed as

$$\Delta E_1 = E\left(\pm \frac{5}{2}\right) - E\left(\pm \frac{1}{2}\right)$$

$$= \pm \frac{1}{3} \left[(a - F + 18D) + 80a^2 \right]^{1/2},$$

$$\Delta E_2 = E\left(\pm \frac{3}{2}\right) - E\left(\pm \frac{1}{2}\right)$$

$$= \frac{3}{2} (a - F) - D \pm \frac{1}{6} \left[(a - F + 18D)^2 + 80a^2 \right]^{1/2},$$
(10)

where the signs '+' and '-' correspond to $D \ge 0$ and D < 0, respectively. Kuang has shown that the low-symmetry EPR parameters D and (a-F) are almost independent of the cubic EPR parameter a for Fe³⁺ in Al₂O₃ [6]. We note that this conclusion is also suitable for the KZnF₃:Fe³⁺ system, so we can take an cubic approximation in the calculation of the EPR parameter a and determine D and (a-F) by using Eq. (10) as well as the corresponding values ΔE_1 , ΔE_2 from the diagonalization of the complete energy matrices.

Based on the two different models, one with a K⁺ vacancy and the other without a K⁺ vacancy, we will, respectively, study the relationship between the EPR

Download English Version:

https://daneshyari.com/en/article/9781864

Download Persian Version:

https://daneshyari.com/article/9781864

Daneshyari.com